首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantum approaches for the insertion dynamics of the H+ + D2 and D+ + H2 reactive collisions
Authors:González-Lezana Tomas  Aguado Alfredo  Paniagua Miguel  Roncero O
Institution:Unidad Asociada Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas (UAM-CSIC), Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 123, Madrid 28006, Spain.
Abstract:The H(+)+D(2) and D(+)+H(2) reactive collisions are studied using a recently proposed adiabatic potential energy surface of spectroscopic accuracy. The dynamics is studied using an exact wave packet method on the adiabatic surface at energies below the curve crossing occurring at approximately 1.5 eV above the threshold. It is found that the reaction is very well described by a statistical quantum method for a zero total angular momentum (J) as compared with the exact ones, while for higher J some discrepancies are found. For J >0 different centrifugal sudden approximations are proposed and compared with the exact and statistical quantum treatments. The usual centrifugal sudden approach fails by considering too high reaction barriers and too low reaction probabilities. A new statistically modified centrifugal sudden approach is considered which corrects these two failures to a rather good extent. It is also found that an adiabatic approximation for the helicities provides results in very good agreement with the statistical method, placing the reaction barrier properly. However, both statistical and adiabatic centrifugal treatments overestimate the reaction probabilities. The reaction cross sections thus obtained with the new approaches are in rather good agreement with the exact results. In spite of these deficiencies, the quantum statistical method is well adapted for describing the insertion dynamics, and it is then used to evaluate the differential cross sections.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号