首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 182 毫秒
1.
采用含硫前驱体四硫代钼酸铵直接构建MoS_2催化剂,通过调变Co/Mo原子比深入认识Co调变MoS_2催化剂的作用本质及其FCC汽油选择性加氢脱硫机理。借助XRD、HRTEM、XPS、H2-TPR和Py-FTIR表征发现,Co/M o原子比能够影响催化剂的活性相微观结构组成,从而影响催化剂的加氢脱硫活性和选择性。当Co/Mo(atomic ratio)0.2时,助剂Co原子倾向于占据MoS_2相的边角位而形成Co Mo S活性相,明显提高了催化剂的加氢脱硫活性;当0.2Co/Mo(atomic ratio)0.6时,助剂Co在催化剂表面形成适量的Co_9S_8相,其产生的溢流氢能提高硫化物的脱除活性而对烯烃饱和活性的影响较小;当Co/Mo(atomic ratio)0.6时,过量的Co会形成大颗粒的Co_9S_8相,阻碍硫化物和烯烃与催化剂活性中心的接触,从而降低催化剂的活性和选择性。  相似文献   

2.
采用程序升温还原(TPR)、高分辨透射电镜(HRTEM)和X射线光电子能谱(XPS)表征手段对共浸渍法制备的不同磷含量NiMo/γ-Al2O3催化剂进行了表征,研究了磷含量对NiMo/γ-Al2O3催化剂活性相结构的影响。TPR研究表明,磷能够减少四面体配位Mo物种的数量,增加八面体配位Mo物种的数量,促进高活性Ⅱ型"Ni-Mo-S"活性相的形成。HRTEM研究表明,随磷含量的增加,MoS2颗粒堆积层数增加,催化剂的加氢选择性提高;适量磷能够增加边角位有效Mo原子的分散度(fMo),增加催化剂表面加氢脱硫(HDS)和加氢脱氮(HDN)活性位的数量。上述结论得到了XPS表征的证实:适量磷增加了催化剂表面Mo原子浓度、提高有效助剂比率(PR)和提升比率(Ni/Mo),相应催化剂表现出最高的HDS和HDN活性;但过高磷含量能够引起MoS2颗粒过度堆积,片层长度过长,导致活性位数量减少,催化活性降低。  相似文献   

3.
张宇  王世兴  杨蕊  戴腾远  张楠  席聘贤  严纯华 《化学学报》2020,78(12):1455-1460
利用前驱物形貌导向法,成功制备了Co9S8/MoS2异质结构催化剂,该催化剂在碱性析氢反应(HER)中表现出优异的催化活性及稳定性,其在10 mA·cm-2处的过电势仅为84 mV.通过X射线粉末衍射(XRD)、透射电子显微镜(TEM)、电子自旋共振(ESR)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和同步辐射(XAFS)等表征,证明了CoS2/MoS2在H2氛围下煅烧形成Co9S8/MoS2的过程中,CoS2中Co的配位模式从部分八面体向Co9S8中的四面体转变,这种转变可活化MoS2的惰性平面,从而使其更有利于吸附H*.除此之外,接触角数据表明:该催化剂具有良好的亲水性,有利于电解液渗透及气体分子的迅速扩散,从而促进HER反应速率.由于异质结构间具有强烈的相互作用,该催化剂可表现出良好的结构稳定性.本工作基于Co9S8/MoS2异质结构的成功构筑及对其HER催化机理的充分探讨,为后续硫化物异质结及其在电催化中的应用提供了良好的思路和研究基础.  相似文献   

4.
对分层装填的Ni2P//MoS2催化剂上的二苯并噻吩加氢脱硫反应进行了研究。结果表明,分层装填的Ni2P/Al2O3和MoS2/Al2O3催化剂在二苯并噻吩加氢脱硫反应中存在氢溢流效应,氢溢流有助于提高MoS2催化剂的活性位密度和加氢脱硫反应速率。由于Ni2P比NiSx具有更强的氢分子解离能力,Ni2P//MoS2催化体系的氢溢流因子略高于NiSx//MoS2;相对于NiSx,Ni2P对MoS2催化剂是更好的助剂。  相似文献   

5.
以脱硫选择性不同的2组催化裂化汽油加氢脱硫催化剂为研究对象, 采用CO吸附原位红外光谱表征了2组催化剂的活性相特征, 并通过分子模拟计算方法比较了助剂Co加入前后噻吩和1-己烯在催化剂表面的电荷分布、吸附能及其加氢反应的活化能等, 探讨了助剂Co的加入对选择性加氢脱硫催化剂脱硫选择性的作用机理. 结果表明, 加氢脱硫催化剂CoMoS活性相的增加有利于提高催化剂的加氢脱硫/加氢降烯烃(HDS/HYD)选择性. 与1-己烯加氢位相比, Co的加入显著提高了噻吩分子加氢位的缺电子性, 噻吩在催化剂表面的吸附度增强, 显著降低噻吩加氢反应的能垒, 从而使噻吩加氢反应更易进行. 这也表明CoMoS为高HDS活性、高HDS/HYD选择性的活性相.  相似文献   

6.
以二烷基二硫代氨基甲酸钼(Mo-DTC)和六羰基钼(Mo(CO)6)为前驱体、水热法合成了分散型纳米MoS2,采用X-ray射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱分析(XPS)和程序升温脱附法(NH3-TPD)等方法对其进行了表征。利用三种烯烃(辛烯、苯乙烯、反式二苯乙烯)、苯并噻吩和蒽等构建模拟油浆体系,结合气相色谱-质谱(GC-MS)分析,对分散型纳米MoS2的模拟油浆加氢处理催化性能进行了研究。结果表明,不同预处理条件下制备出的催化活性样品均为2H-MoS2,但各样品的结晶度、颗粒尺寸、硫化程度及其酸性质等均有所不同,其中,总酸量差别较小;以Mo-DTC和Mo(CO)6为前驱体的优选硫化条件分别为380℃/30 min 和370℃/30 min,所得到的催化剂对烯烃和噻吩的加氢活性较高。其中,Mo-DTC基纳米MoS2催化剂的烯烃加氢饱和转化率高达98.10%,加氢脱硫率为94.51%,而蒽的部分加氢饱和转化率则较低,为29.47%,且无八氢蒽(8HN)或全氢蒽的生成。Mo(CO)6基纳米MoS2催化剂的加氢效果则略差,烯烃加氢饱和转化率为94.01%,加氢脱硫率为89.01%,对蒽的加氢饱和转化率为24.20%,无8HN或全氢蒽的生成。总体而言,由Mo-DTC所制备的MoS2催化剂具有烯烃高效饱和、含硫化合物高效脱硫、芳烃浅度加氢饱和的效果,且油浆加氢处理反应的选择性及催化稳定性均更高。  相似文献   

7.
由于国家对石油产品中含硫量的严格控制,原油脱硫已成为石油化工生产中的一项紧迫任务.硫化钼作为高效加氢脱硫催化剂而被广泛研究.过渡金属Co掺杂提高了传统钼基硫化物加氢脱硫催化剂的催化活性,目前被广泛应用于原油催化脱硫.本文采用密度泛函理论,对Co修饰MoS2三角形团簇边缘不饱和活性位(CUS)的形成及甲硫醇的催化脱硫过程进行了理论研究.结果表明,活性位形成过程中,氢气裂解的活性位为Mo原子和S原子,随后形成硫化氢并脱附.甲硫醇倾向于吸附在CUS的TopCo位.通过电荷布居及前线轨道分析发现,Co的引入改变了表面原子电荷及CUS的LUMO轨道分布,并且Co表现出强吸电子能力,从而促进甲硫醇的吸附.CH3SH最优脱硫路径为先后断裂S-H和C-S键形成甲烷实现脱硫,其中形成甲烷的基元步骤为整个脱硫反应的速率控制步骤,其能垒为1.51 eV.  相似文献   

8.
考察了ZrO2、Ru或Pt助剂对Co/Al2O3催化剂结构及浆态床费托合成反应性能的影响。实验结果表明,添加ZrO2助剂可阻止或降低难还原铝酸钴的形成、促进催化剂的还原、提高Co/Al2O3催化剂对费托合成反应的催化活性、降低甲烷选择性并提高C5+烃选择性。H2-TPR表征结果表明,少量Ru或Pt助剂均能降低Co-ZrO2/Al2O3催化剂中钴物种还原温度(Co3O4→CoO和CoO→Co0),提高催化剂的还原度,催化剂呈现出良好的CO加氢反应活性。此外,催化剂组分间浸渍次序对费托合成反应性能有重要影响,载体γ-Al2O3先浸渍Zr组分,可有效抑制难还原化合物形成;Co、Ru组分共浸渍加强了Co和Ru组分密切接触程度,更利于钴物种的还原;Co、Pt组分依次浸渍更利于活性组分的均匀分布,催化剂具有最佳的费托合成反应性能。  相似文献   

9.
采用水热法合成了MoS2加氢脱硫催化剂,用物理吸附、XRD、SEM、TEM等手段对催化剂进行表征,并以噻吩为模型化合物研究不同类型表面活性剂对合成MoS2催化剂活性的影响。结果表明,加入表面活性剂制备的催化剂颗粒疏松均匀,比表面积、孔容、孔径都较大,并且MoS2层状堆叠数目增加;所制催化剂在噻吩加氢脱硫反应中均显示出较好的催化活性,在573 K、4.0 MPa条件下,噻吩加氢脱硫的转化率均大于97.0%,加入阳离子表面活性剂的Mo-S-C催化活性最高,噻吩转化率可达到99.9%。MoS2催化剂的活性顺序为Mo-S-C>Mo-S-S>Mo-S-P>Mo-S-N。  相似文献   

10.
通过硝酸钴与硅酸钠共沉淀、辅以正丁醇干燥技术制备了具有原子分散度的Co-O-Si复合氧化物(Co/Si原子比 ≈ 0.65),该催化剂具有较大的比表面积(562 m2/g)和较强表面酸性. 在硫化处理后,能够形成高度分散的硫化物活性组分,在模型汽油加氢处理反应中显示了较高的催化活性,在573 K时,噻吩的加氢脱硫活性可达99.4%,同时,1-己烯的骨架异构收率达到了35%. 该催化剂虽然不含Mo,其加氢脱硫活性可与工业催化剂Co-Mo/γ-Al2O3相当. 而在汽油深度加氢脱硫过程中,直链烯烃往往被加氢饱和,造成辛烷值损失. 该催化剂则可使部分直链烯烃发生骨架异构而生成异构烷烃,可减少深度加氢脱硫过程中的辛烷值损失.  相似文献   

11.
 为了更好地认识加氢脱硫和催化加氢反应中的载体影响和助剂效应,在同样的催化剂制备方法及反应条件下,研究了噻吩加氢脱硫(HDS)和四氢萘催化加氢(HYD)反应.结果表明,对于无助剂的Mo和W催化剂,载体对催化活性的影响顺序为TiO2-Al2O3>ZrO2>Al2O3.助剂的添加改变了催化剂活性顺序.Ni助剂催化剂的活性明显高于Co助剂催化剂.ZrO2担载的添加Ni的Mo和W催化剂分别获得了最佳的HDS和HYD活性.然而,添加Pt的Mo和W催化剂其HDS和HYD活性仅是Pt与Mo(W)二者的加和,Pt与Mo(W)之间没有协同效应.先将担载的Mo和W预硫化再将助剂引入体系的催化剂制备方法可以避免Ni和Co过早硫化形成类硫化镍(或硫化钴)物相,与采用螯合物分子方法制备的催化剂间有一定的相似性.  相似文献   

12.
Hydrodesulfurization of Selective Catalytic Cracked Gasoline   总被引:1,自引:0,他引:1  
Hydrodesulfurization (HDS) reaction of catalytic cracked gasoline (CCG) on Co–Mo/γ-Al2O3 was investigated in detail to make clear the important factors for deep HDS of CCG. A CCG containing 229 ppm sulfur and 30.4 vol% olefins was used in this study. Eleven alkylthiophenes and 2 alkylbenzothiophenes, 3 alkylthiacyclopentanes, and 2 disulfides were identified in this CCG by means of GC-AED analyses. In the reaction at 220 °C and 1.6 MPa using a conventional flow reactor of bench pilot scale, these sulfur compounds were hydrodesulfurized, whereas thiols were produced from H2S and olefins. The reactions of thiophene HDS, isoolefin and n-olefin hydrogenation (HG) were studied to clarify the active sites on the catalyst. First, the effect of H2S on the reaction was examined. The HG of n-olefin as well as thiophene HDS was inhibited by H2S, while the HG of isoolefin was promoted. The effects of Co on these three reactions were also examined over the catalysts with different Co/(Co + Mo) ratios. Thiophene HDS was promoted by Co, while isoolefin HG was little affected and n-olefin HG was largely retarded. From these examinations, three types of active sites for thiophene HDS, isoolefin HG and n-olefin HG were proposed. Oligomers of isoolefins were found in the isoolefin hydrotreated product. The possibility of improving the HDS selectivity by carbonaceous deposit was investigated for HDS reactions of CCG and model compounds. The coking pretreatment was carried out on the catalyst and each reaction was examined. HDS selectivity (higher activity for HDS and lower activity for olefin HG) on CCGHDS was improved. Relative deactivation was in the following order, isoolefin HG > thiophene HDS > n-olefin HG. Pyridine modification (i.e. pyridine injection at 150 °C and partial pyridine desorption at 300 °C) was investigated on thiophene and olefins reaction. Thiophene HDS was little affected. Olefin HG and thiol production reaction were strongly inhibited. Improvement of HDS selectivity was observed in the reactions of CCG after pyridine modification. Improvement of HDS selectivity by pyridine modification was considered to result from the selective deactivation of the active sites for olefin reactions (hydrogenation and thiol production).  相似文献   

13.
Mo(W)-Co(Ni,Fe)簇合物的加氢脱硫催化活性   总被引:1,自引:0,他引:1  
对线型、立方烷型和笼状3种不同构型的Mo(W)-Co(Ni,Fe)-S(O)簇共12种化合物进行了噻吩加氢脱硫和环己烯加氢的催化活性研究.讨论了簇合物的组成,金属原子的配比、价态与催化活性的关系.探讨了不同构型对活性的影响.  相似文献   

14.
Co- or Ni-promoted Mo sulfide catalysts were prepared by combining three methods, sonochemical synthesis of Mo sulfides, promoter addition by chemical vapor deposition (CVD), and fluorination of alumina support, to improve their performance in the hydrodesulfurization (HDS) process. Sonochemically synthesized Mo sulfides exhibited higher HDS activity, particularly for the hydrogenation (HYD) of dibenzothiophene (DBT) compounds, than in the case of the catalysts prepared by impregnation due to the improved dispersion of the Mo species. The addition of Co or Ni to the catalyst by a CVD method allowed the selective decoration of the Mo-sulfide surface with the promoter and accordingly produced greater amounts of the Co–Mo–S and Ni–Mo–S phases, which are known to be active sites for HDS. The performance of catalysts prepared by combining sonochemical and CVD methods was further improved by the addition of fluorine, which generated Brönsted acid sites that were responsible for the HYD route and also for the migration of methyl groups in 4,6-dimethyldibenzothiophene (4,6-DMDBT).  相似文献   

15.
HY–Al2O3-supported CoMo catalysts with a chelating agent and phosphorus for the hydrodesulfurization (HDS) of diesel fractions were prepared. The activity measurements with the prepared catalysts were carried out with straight-run light gas oil feedstocks in a pilot plant under industrial hydrotreating conditions. As a result, Cosmo Oil Co., Ltd. developed a new CoMoP/HY–Al2O3 catalyst, C-606A, which had three times higher HDS activity than the conventional CoMoP/Al2O3 catalyst. Commercial operations to produce ultra-low sulfur diesel (ULSD) with C-606A have successfully demonstrated its high performance and high stability. This catalyst has an extremely high activity, which enables to achieve <10-ppm sulfur in products in diesel hydrotreater designed to produce 500-ppm sulfur diesel fuels. Mo K-edge EXAFS, TEM and FT-IR of adsorbed NO were performed to investigate the nature of the active sites on the developed catalysts. The results showed that the new catalyst has multiple layers of MoS2 slabs and the edges of MoS2 are mainly occupied by Co–Mo–S phases. XPS and FT-IR were used to investigate the sulfiding behavior of Co and Mo in the formation process of the active sites during sulfidation. The results showed that addition of carboxylic acid to the impregnation solution postponed the sulfidation of Co at low temperatures, thereby increasing formation of the Co–Mo–S phase.  相似文献   

16.
In this paper, carbon nanotube supported Co-Mo catalysts for selective hydrodesulphurization (HDS) of fluid catalytic cracking (FCC) gasoline were studied, using di-isobutylene, cyclohexene, 1-octene and thiophene as model compounds to simulate FCC gasoline. The results show that the Co-Mo/CNT has very high HDS activity and HDS/hydrogenation selectivity comparing with the Co-Mo/γ-Al2O3 and Co-Mo/AC catalyst systems. The saturation ratio of cyclohexene was lower than 50%, and the saturation ratio of 1,3-di-isobutylene lower than 60% for the Co-Mo/CNT catalysts. Co/Mo atomic ratio was found to be one of the most important key factors in influencing the hydrogenation selectivity and HDS activity, and the most suitable Co/Mo atomic ratio was 0.4. Co/CNT and Mo/CNT mono-metallic catalysts showed lower HDS activity and selectivity than the Co-Mo/CNT bi-metallic catalysts.  相似文献   

17.
The dispersion of the active phase and loading capacity of the Mo species on carbon nanotube (CNT) was studied by the XRD technique. The reducibility properties of Co-Mo catalysts in the oxide state over CNTs were investigated by TPR, while the sulfided Co-Mo/CNT catalysts were characterized by means of the XRD and LRS techniques. The activity and selectivity with respect to the hydrodesulfurization (HDS) performances on carbon nanotube supported Co-Mo catalysts were evaluated. It was found that the main active molybdenum species in the oxide state MoO3/CNT catalysts were MoO2, but not MoO3, as generally expected. The maximum loading before the formation of the bulk phase was lower than 6% (percent by mass, based on MoO3). TPR studies revealed that the active species in the oxide state Co-Mo/CNT catalysts were reduced more easily at relatively lower temperatures in comparison to those of the Co-Mo/γ-Al2O3 catalysts, indicating that the CNT support promoted or favored the reduction of the active species. The active species of a Co-Mo-0.7/CNT catalyst were more easily reduced than those of the Co-Mo/CNT catalysts with Co/Mo atomic ratios of 0.2, 0.35, and 0.5, respectively, suggesting that the Co/Mo atomic ratio has a great effect on the reducibility of the active species. It was found that the incorporation of cobalt improved the dispersion of the molybdenum species on the support, and a phenomenon of mobilization and re-dispersion had occurred during the sulfurization process, resulting in low valence state Mo3S4 and Co-MoS2.17 active phases. HDS measurements showed that the Co-Mo/CNT catalysts were more active than the Co-Mo/γ-Al2O3 ones for the desulfurization of DBT, and the hydrogenolysis/hydrogenation selectivity of the Co-Mo/CNT catalysts was also much higher than those of the Co-Mo/γ-Al2O3. The Co-Mo/CNT catalyst with a Co/Mo atomic ratio of 0.7 showed the highest activity, whereas the catalyst with a Co/Mo atomic ratio of 0.35 had the highest selectivity.  相似文献   

18.
The thiophene hydrodesulfurization (HDS) reaction on γ-Al2O3 supported CoMo, NiMo and NiW sulfide catalysts was compared in order to gain insight into the promoter effect on direct desulfurization (DDS) and hydrogenation (HYD) pathways. Ni-promoted Mo (or W) sulfide catalysts favor the hydrogen transfer reactions relative to CoMo sulfide catalyst, which facilitates the direct route instead. This different performance and also the dependence of the apparent Arrhenius parameters with the catalyst formulation were attributed to the major participation of Mo (or W) edge for the Ni-containing catalysts and S edge for CoMo sulfide catalyst upon the thiophene-HDS reaction.  相似文献   

19.
The catalytic activity and the structure of unsupported Mo and CoMo nitrided catalysts were investigated. It was found that the structure and catalytic activity of the nitrided catalysts are influenced by the conditions of nitridation. Molybdenum oxynitrides are more active in hydrodesulfurization (HDS) of thiophene than MoS2. The addition of cobalt to nitrided Mo improves its HDS activity, however, sulfided CoMo catalyst is still more active than the nitrided one. Synergy between Co and Mo for the nitrided unsupported CoMo catalyst exists at lower degree than for the sulfided form of CoMo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号