首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
采用程序升温还原(TPR)、高分辨透射电镜(HRTEM)和X射线光电子能谱(XPS)表征手段对共浸渍法制备的不同磷含量NiMo/γ-Al2O3催化剂进行了表征,研究了磷含量对NiMo/γ-Al2O3催化剂活性相结构的影响。TPR研究表明,磷能够减少四面体配位Mo物种的数量,增加八面体配位Mo物种的数量,促进高活性Ⅱ型"Ni-Mo-S"活性相的形成。HRTEM研究表明,随磷含量的增加,MoS2颗粒堆积层数增加,催化剂的加氢选择性提高;适量磷能够增加边角位有效Mo原子的分散度(fMo),增加催化剂表面加氢脱硫(HDS)和加氢脱氮(HDN)活性位的数量。上述结论得到了XPS表征的证实:适量磷增加了催化剂表面Mo原子浓度、提高有效助剂比率(PR)和提升比率(Ni/Mo),相应催化剂表现出最高的HDS和HDN活性;但过高磷含量能够引起MoS2颗粒过度堆积,片层长度过长,导致活性位数量减少,催化活性降低。  相似文献   

2.
采用NiMoP浸渍液浸渍载体γ Al2O3制备了不同磷含量的NiMoP/Al2O3加氢处理催化剂。为了研究磷对该系列催化剂活性相结构的影响,用二苯并噻吩(DBT)和喹啉为模型化合物,考察了催化剂的加氢脱硫(HDS)和加氢脱氮(HDN)性能。结果表明,添加适当的磷能够提高催化剂的HDS和HDN活性,但是高含量的磷能显著的降低催化剂的催化性能。通过对催化剂进行XRD和HRTEM表征发现,添加磷能够增加MoS2的堆积层数以及Ⅱ型“Ni-Mo-S”相的相对含量,这是因为在制备过程中添加磷降低了活性组分与载体之间的相互作用。  相似文献   

3.
制备了一系列添加不同含量F助剂的NiWF(x)/γ-Al2O3催化剂,并采用X射线衍射(XRD)、N2吸附、X射线光电子能谱(XPS)、NH3-TPD和高分辨透射电子显微镜(HRTEM)等手段对其结构和物化性质进行了表征,同时在固定床反应器上考察了其加氢脱氮(HDN)和加氢脱硫(HDS)活性,反应原料为中国内蒙中低温煤焦油。结果显示,随着F含量的增加,催化剂孔容和孔径没有明显变化,但比表面积减小。催化剂在643 K下硫化6 h后,其硫化度随着F含量的增加而减少,强酸位数和总酸位数呈现先略微增加后减少的趋势。高分辨透射电子显微镜测试表明,硫化后的催化剂中含有具有典型层状结构的WS2。F含量对NiWF(x)/γ-Al2O3的煤焦油HDN性能有较大影响,但对其HDS活性影响很弱。  相似文献   

4.
采用CO和NO作为探针分子,应用原位红外光谱法(in-situ FT-IR)和程序升温还原(H2-TPR)对Mo/γ-Al2O3和Co-Mo/γ-Al2O3加氢催化剂进行表征,并对催化剂进行了加氢脱硫(HDS)活性评价。实验结果表明,在Co-Mo/γ-Al2O3催化剂表面存在三个吸附位;在Mo/γ-Al2O3催化剂中加入助剂钴对钼吸附位起到显著的改性作用,并且引入新的活性中心,提高了催化剂的催化活性;随着钼含量的增加,活性中心数目逐渐增多;用CO-NO共吸附原位红外光谱研究了Co-Mo/γ-Al2O3催化剂表面活性中心的信息,证明不同的Mo中心分别吸附CO和NO,并将它们区分开来,解决了不同活性中心的光谱互相重叠的问题。  相似文献   

5.
以γ-Al2O3为载体,采用等体积浸渍法制备了不同Ni/W原子比的低温煤焦油加氢处理催化剂,并以BET、XRD、H2-TPR和TG对催化剂进行表征。在固定床反应器中,以低温煤焦油小于350 ℃馏分作为原料对催化剂进行了加氢性能的评价,并采用蒸馏、GC/MS、荧光指示剂吸附及元素分析对原料及产物的馏分分布及组成进行了分析。结果表明,NiO和WO3在载体上形成了均匀分散,NiO含量较低时与γ-Al2O3有较强的作用力而难以还原。当Ni/W原子比为0.38时,酚类化合物的转化率、航煤馏分选择性以及产物中环烷烃和氢化芳烃的含量均最高,加氢脱硫(HDS)活性、加氢脱氮(HDN)活性及产物的H/C原子比也最高,说明Ni/W原子比为0.38时,NiW/γ-Al2O3催化剂对煤焦油加氢处理具有较好的效果。  相似文献   

6.
采用含硫前驱体四硫代钼酸铵直接构建MoS2催化剂,通过调变Co/Mo原子比深入认识Co调变MoS2催化剂的作用本质及其FCC汽油选择性加氢脱硫机理。借助XRD、HRTEM、XPS、H2-TPR和Py-FTIR表征发现,Co/Mo原子比能够影响催化剂的活性相微观结构组成,从而影响催化剂的加氢脱硫活性和选择性。当Co/Mo(atomic ratio)<0.2时,助剂Co原子倾向于占据MoS2相的边角位而形成CoMoS活性相,明显提高了催化剂的加氢脱硫活性;当0.2 < Co/Mo(atomic ratio) < 0.6时,助剂Co在催化剂表面形成适量的Co9S8相,其产生的溢流氢能提高硫化物的脱除活性而对烯烃饱和活性的影响较小;当Co/Mo(atomic ratio)>0.6时,过量的Co会形成大颗粒的Co9S8相,阻碍硫化物和烯烃与催化剂活性中心的接触,从而降低催化剂的活性和选择性。  相似文献   

7.
采用胶体沉积法制备了Pt-FeOx/γ-Al2O3催化剂,通过XRD、TEM、BET、XPS、H2-TPR和FT-IR等技术对催化剂进行了表征,考察了焙烧温度对Pt-FeOx/γ-Al2O3催化剂表面结构及其催化甲醛氧化性能的影响。结果表明,焙烧温度对Pt-FeOx/γ-Al2O3催化剂的氧化还原性能、Pt物种的化学状态以及表面羟基的数量有较大的影响。在室温下,所有Pt-FeOx/γ-Al2O3催化剂均表现出催化氧化活性,其中,200℃焙烧的Pt-FeOx/γ-Al2O3催化剂表现出最好的催化性能,可以将甲醛100%转化为CO2和H2O。较低温度焙烧的Pt-FeOx/γ-Al2O3催化剂表面Pt物种具有较好的价态分布以及更多的界面活性位,如Pt-O-Fe物种,因而在温和条件下对甲醛的催化氧化活性较高。  相似文献   

8.
采用沉淀法分别以乙二醇、水、乙二醇-聚乙二醇600为修饰剂,制备了形貌分别为棒状(a-NiO)、粒状(b-NiO)和片状(c-NiO)结构的NiO催化剂,然后和γ-Al2O3通过研混法制得NiO/γ-Al2O3催化剂。采用XRD、TEM及H2-TPR等技术手段对催化剂进行了表征。TEM观察NiO的形貌分别为棒状、粒状和片状。H2-TPR结果表明,NiO/γ-Al2O3催化剂的氧化中心数量顺序为b-NiO/γ-Al2O3<a-NiO/γ-Al2O3<c-NiO/γ-Al2O3。XRD结果表明,NiO/γ-Al2O3催化剂还原后的Ni晶粒尺寸大小为b-Ni>a-Ni>c-Ni。在连续流动固定床反应装置上考察了Ni/γ-Al2O3对CO甲烷化反应的催化活性,研究了混合方法和形貌对CO甲烷化反应的影响。结果表明,研混法制得催化剂的活性及稳定性较好。催化剂形貌对CO甲烷化反应的催化活性顺序为c-Ni/γ-Al2O3>a-Ni/γ-Al2O3>b-Ni/γ-Al2O3,常压、593K和2500h-1反应条件下,wNi为15% c-Ni/γ-Al2O3催化CO合成CH4选择性及CO转化率分别达90.80%和99.63%。  相似文献   

9.
制备一系列包含或不包含铜、钼组分的Ni/γ-Al2O3催化剂,并对其进行表征和性能测试。考察了铜、钼负载量,浸渍顺序(包括连续浸渍和共浸渍),反应条件对脂肪酸甲酯加氢脱氧反应性能的影响。根据TG数据,使用过的20Ni-6Cu/γ-Al2O3催化剂其热失重小于20Ni/γ-Al2O3催化剂,这表明,铜的引入能够有效抑制反应过程中催化剂表面的积炭行为。对于20Ni-6Cu/γ-Al2O3和20Ni-6Cu-nMo/γ-Al2O3(n=2、5、8和12)催化剂,NH3-TPD分析结果显示,钼物相的引入对载体γ-Al2O3的酸性位有着显著影响,当钼负载量达到5%时,可以观察到一个新的酸位对应于中强酸位。铜和钼修饰过的催化剂其催化性能要高于Ni/γ-Al2O3催化剂。从XPS的分析可以看出,催化剂中的铜主要以正二价形式存在,钼主要以正四价和正六价形式存在,而且不同的浸渍顺序会影响催化剂表面活性组分的实际含量。此外,脂肪酸甲酯的转化率和烷烃产品的收率也和所制备出来的催化剂的浸渍顺序有关。在所有的催化剂中,使用连续浸渍(先浸渍镍铜组分、浸渍钼组分)所制备的三金属20Ni-6Cu-5Mo/γ-Al2O3催化剂展现了优异的催化性能。在适宜的反应条件下(350 ℃,2.5 MPa,WSHV=2.0 h-1,H2/oil ratio=1250 mL/mL),脂肪酸甲酯的转化率和烷烃产品的收率分别达到98.4%和94.2%。  相似文献   

10.
采用溶胶凝胶法制备了不同γ-Al2O3含量的钛铝复合载体,以此为载体采用浸渍法负载V2O5和WO3制备了一系列催化剂。采用X射线衍射(XRD)、比表面积测定(BET)、程序升温还原(H2-TPR)、高分辨率透射电子显微镜(HRTEM)等表征技术对催化剂表面形态进行分析,同时在模拟氨气选择性催化还原NO(NH3-SCR)的反应条件下,对催化剂的脱硝反应活性和SO2抗中毒进行考察。结果发现,TiO2和γ-Al2O3之间的协同作用使得V2O5-WO3/TiO2-γ-Al2O3催化剂的脱硝效率及活性窗口明显优于单一载体制备的催化剂,表现出了良好的热稳定性和抗SO2毒化能力,特别是V2O5-WO3/TiO2-15% γ-Al2O3在310~460 ℃,NO的转化率均在80%以上,反应窗口最宽。各种表征结果表明,TiO2-γ-Al2O3复合载体中γ-Al2O3高度分散在TiO2上,复合载体具有较大的比表面积,同时具有较强的还原能力。  相似文献   

11.
采用NiMoP浸渍液中添加乙二醇(EG)的方式制备了不同EG含量的NiMoP(x)/Al_2O_3催化剂,为研究EG及其含量对该系列催化剂催化性能和活性相结构的影响,用二苯并噻吩(DBT)和喹啉(Q)为模型化合物,考察了催化剂的加氢脱硫(HDS)和加氢脱氮(HDN)性能。结果表明,在EG添加量较低的情况下(EG/Ni物质的量比分别为0、0.5、1、2、3),EG能够明显提高催化剂对DBT和Q的HDS和HDN活性,其中,HDN活性提高幅度大于HDS,且随着EG含量提高,催化剂的HDS和HDN活性进一步提高。通过TEM分析和XPS分析可知,EG有助于增加催化剂中MoS_2颗粒的堆积层数和片层长度,且随着EG含量增加,堆积层数和片层长度都有所增加;EG有助于提高Mo表面原子浓度,对Ni表面原子浓度影响较小,但明显提高了Mo和Ni硫化程度。TG表征说明,EG在氧化铝和催化剂表面存在多种相互作用方式,并且存在与活性组分相互作用的耐高温有机物种。  相似文献   

12.
通过共沉淀法制备了ZrO2和Al2O3载体,采用等体积浸渍法制备了MoO3质量分数为5%的Mo/ZrO2和Mo/Al2O3催化剂,并用于甲烷化反应。在三种反应气氛下对两种预硫化的Mo基催化剂进行评价,发现ZrO2载体均可显著促进甲烷化反应,同时能够促进水汽变换(WGS)反应。通过XRD、H2-TPR、XPS和TEM等表征发现,两种载体上Mo物种的硫化程度以及暴露的活性位数量不同,从而导致两种催化剂上催化性能差异显著。与Mo/Al2O3相比,Mo/ZrO2催化剂上的MoO3更易被还原,硫化程度也更高,并且Mo4+的含量更高,Mo6+的含量更低。虽然ZrO2载体上MoS2尺寸较大,边位置的Mo比例有所降低,但是由于MoS2沿ZrO2颗粒表面弯曲生长,使得MoS2基面成为反应的活性位;因此,Mo/ZrO2催化剂在甲烷化与WGS反应中表现出更优异的催化性能。  相似文献   

13.
采用等体积浸渍法制得一系列NiMo/Al_2O_3-USY催化剂,在200 mL固定床上考察了不同金属负载量对其中低煤焦油加氢裂化催化性能的影响,进一步用NH_4F溶液改性USY以提高催化剂的脱硫性能,并结合XRD、氮气吸附-脱附、XPS、HR-TEM、H_2-TPR和NH_3-TPD等手段对催化剂进行了表征分析。结果表明,NiM o/Al_2O_3-USY催化剂适宜的M oO_3负载量为15%(质量分数);当MoO_3含量超过15%后,MoS_2活性相在载体上团聚,硫化程度趋于稳定,强酸酸量和孔径减少,增加金属负载量对煤焦油加氢裂化转化率影响较小。NH_4F改性USY可增大NiM o/Al_2O_3-USY催化剂的孔径,有利于提高煤焦油加氢裂化转化率。表面强酸酸量减少后,产品中的硫含量明显增加,说明强酸酸量是影响产物硫含量的关键因素。当NH_4F浓度为0.6 mol/L时,NH_4F改性USY制得的NM 0.6催化剂上煤焦油加氢裂化的转化率为87.65%,产品汽油馏分(≤180℃)硫含量为5.96 mg/kg,柴油馏分(180-320℃)硫含量为34.98 mg/kg。  相似文献   

14.
韩璐  周亚松  魏强  罗怡  王靖宇 《燃料化学学报》2014,42(10):1233-1239
以Ni、W为催化剂的活性金属组分,采用等体积浸渍法制备了NiW/Al2O3加氢脱氮催化剂,考察了Al2O3载体表面经硼酸修饰后对催化剂酸性的影响,以及活性金属与柠檬酸络合后对催化剂加氢反应性能的影响。NH3-TPD、HRTEM、H2-TPR、XPS等表征结果表明,Al2O3载体表面硼酸修饰增加了催化剂表面的中强酸量,减少了强酸量,且削弱了金属与载体之间的强相互作用,但活性中心数目减少。金属与柠檬酸络合可以减小活性相晶粒长度、提高活性相分散性及硫化程度。催化剂的反应评价结果表明,硼酸修饰与柠檬酸络合共同作用可以增强催化剂的重油加氢处理能力,促进芳环与胶质的加氢饱和;具有适宜的氢解与加氢活性,兼顾碱性氮与非碱性氮的脱除,体现了催化剂良好的重油加氢脱氮性能。  相似文献   

15.
针对硫醚化反应过程使用的Mo-Ni/Al2O3催化剂,考察了不同浸渍方法对其催化性能和表面结构性质的影响。结果表明,通过同步浸渍和分步浸渍方法制得Mo-Ni/Al2O3催化剂的活性顺序为:先浸渍Mo后浸渍Ni的催化剂(SI-mn)≈Ni和Mo共同浸渍的催化剂(MN)>先浸渍Ni后浸渍Mo的催化剂(SI-nm)。对于SI-mn催化剂,先负载Mo后减弱了二次浸渍的Ni金属与载体间的相互作用,有利于负载金属的活化,并在二次浸渍后焙烧过程显现出显著的电子效应,形成新的Mo-Ni前体物种,有利于在预硫化过程形成适宜硫醚化和二烯烃选择性加氢的活性中心相,促进硫醚化反应和二烯烃选择性加氢。对于共同浸渍的MN催化剂也有类似的性质,因而也具有较好的催化性能。  相似文献   

16.
The catalytic activity of CoMoS /CNT towards the Egyptian heavy vacuum gas oil hydrotreating was studied. The delivered CNT was functionalized with 6 mol /L HNO_3. The CNT were loaded with 12% MoO_3( by weight) and 0.7 Co /Mo atomic ratio with impregnation methods. The γ-Al_2O_3 catalyst was also prepared by impregnation method to compare both catalysts activities.The analysis tools such XRD,Raman spectroscopy,TEM,and BET were used to characterize the catalysts. The autoclave reactor was used to operate the hydrotreating experiments. The hydrotreating reactions were tested at various operating conditions of temperature 325-375 ℃,pressure 2-6 MPa,time 2-6 h,and catalyst /oil ratio( by weight) of 1 ∶75,1 ∶33 and 1 ∶10. The results revealed that the CoMoS /CNT was highly efficient for the hydrotreating more than the CoMoS /γ-Al_2O_3. Also, the hydrodesulfurization( HDS) increased with increasing catalyst /oil ratio. Additionally,results showed that the optimum condition was temperature 350℃,pressure 4 MPa,catalyst /oil ratio of 1 ∶75 for 2 h. Furthermore,even at low CoMoS /CNT catalyst /oil ratio of 1 ∶75,an acceptable HDS of 77.1% was achieved.  相似文献   

17.
The effects of preparation process and starting material on hydrodesulfurization (HDS) activity of alumina supported ruthenium, molybdenum and ruthenium–molybdenum hydrotreating catalysts were investigated. Conventional impregnation method and gradual gas phase adsorption were compared as a preparation route. The HDS tests showed that controlled gas phase deposition is advantageous in the preparation of the monometallic catalyst systems. The most promising HDS activity was achieved with the RuMo/Al2O3 catalyst prepared from binuclear organometallic complex. This suggests that the direct ruthenium–molybdenum bond in the structure of the catalyst precursor favors the formation of highly active surface phase. The oxidation and reduction behavior of the catalysts was studied by oxygen pulse chemisorption (PCO) and temperature programmed reduction (TPR). A clear relationship was observed between the method of preparation and the reactivity of the surface species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号