首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
用沉淀法制备了单金属纳米Ru(0)催化剂,考察了ZnSO4和La2O3作共修饰剂对该催化剂催化苯选择加氢制环己烯性能的影响,并用X射线衍射(XRD)、X射线荧光(XRF)光谱、X射线光电子能谱(XPS)、俄歇电子能谱(AES)、透射电镜(TEM)和N2物理吸附等手段对加氢前后催化剂进行了表征. 结果表明,在ZnSO4存在下,随着添加碱性La2O3量的增加,ZnSO4水解生成的(Zn(OH)23(ZnSO4)(H2O)x(x=1,3)盐量增加,催化剂活性单调降低,环己烯选择性单调升高. 当La2O3/Ru 物质的量比为0.075 时,Ru催化剂上苯转化率为77.6%,环己烯选择性和收率分别为75.2%和58.4%. 且该催化体系具有良好的重复使用性能. 传质计算结果表明,苯、环己烯和氢气的液-固扩散限制和孔内扩散限制都可忽略. 因此,高环己烯选择性和收率的获得不能简单归结为物理效应,而与催化剂的结构和催化体系密切相关. 根据实验结果,我们推测在化学吸附有(Zn(OH)23(ZnSO4)(H2O)x(x=1,3)盐的Ru(0)催化剂有两种活化苯的活性位:Ru0和Zn2+. 因为Zn2+将部分电子转移给了Ru,Zn2+活化苯的能力比Ru0弱. 同时由于Ru和Zn2+的原子半径接近,Zn2+可以覆盖一部分Ru0活性位,导致解离H2的Ru0活性位减少. 这导致了Zn2+上活化的苯只能加氢生成环己烯和Ru(0)催化剂活性的降低. 本文利用双活性位模型来解释Ru基催化剂上的苯加氢反应,并用Hückel分子轨道理论说明了该模型的合理性.  相似文献   

2.
曹鹤  陈霄  杜妍  梁长海 《分子催化》2018,32(6):501-510
非(类)金属掺杂金属形成金属间隙或金属间化合物是一种设计高效、高选择性催化剂的重要手段.我们以萘基锂为强还原剂,NiCl2与AlCl3为原料,在室温下化学合成了Ni-intAlx纳米催化剂,并采用pXRD、N2物理吸附、XPS、TEM、H2-TPR、H2-TPD等手段对催化剂进行表征.以萘选择加氢为探针反应,结果显示Ni-intAlx催化剂对萘选择加氢制四氢萘具有高活性及单一选择性.其中Ni-intAl1催化剂具有比Ni样品更纯的FCC晶型,比Ni-intAl1/3更适宜的铝掺杂量,及比Ni-intAl3更适宜的活性组分含量.镍铝之间的电子效应在一定程度上可调变中间产物四氢萘的吸附性能,避免过度加氢,在优化条件下萘转化率和四氢萘选择性分别达97%和98%,铝可用作第二金属掺杂以提高金属位点的活性和对中间产物的选择性.  相似文献   

3.
尿素反应法制备介孔Ni-Mo复合氧化物   总被引:1,自引:0,他引:1  
采用尿素反应法合成出具有介孔结构的Ni-Mo复合氧化物。用XRD、低温氮气吸附-脱附表征、HRTEM、TG-DTA、FTIR等分析手段对所合成的Ni-Mo复合氧化物及其前躯体进行了表征,并确定了制备Ni-Mo复合氧化物适宜的焙烧温度。以2%二苯并噻吩(DBT)溶液为模型化合物,在固定床连续高压微反装置上考察了介孔Ni-Mo复合氧化物作为催化剂的加氢脱硫(HDS)性能。尿素反应法合成的Ni-Mo复合氧化物具有较高的比表面积,达到124 m2·g-1,适宜的孔容0.22 mL·g-1,和理想的孔径分布,平均孔径为5.8 nm。HDS活性评价表明,这种催化剂具有较高的脱硫率和加氢活性,在反应温度为280 ℃时脱硫率可达100%,远高于对比催化剂Ni-Mo/Al2O3。  相似文献   

4.
采用含硫前驱体四硫代钼酸铵直接构建MoS2催化剂,通过调变Co/Mo原子比深入认识Co调变MoS2催化剂的作用本质及其FCC汽油选择性加氢脱硫机理。借助XRD、HRTEM、XPS、H2-TPR和Py-FTIR表征发现,Co/Mo原子比能够影响催化剂的活性相微观结构组成,从而影响催化剂的加氢脱硫活性和选择性。当Co/Mo(atomic ratio)<0.2时,助剂Co原子倾向于占据MoS2相的边角位而形成CoMoS活性相,明显提高了催化剂的加氢脱硫活性;当0.2 < Co/Mo(atomic ratio) < 0.6时,助剂Co在催化剂表面形成适量的Co9S8相,其产生的溢流氢能提高硫化物的脱除活性而对烯烃饱和活性的影响较小;当Co/Mo(atomic ratio)>0.6时,过量的Co会形成大颗粒的Co9S8相,阻碍硫化物和烯烃与催化剂活性中心的接触,从而降低催化剂的活性和选择性。  相似文献   

5.
研究了非负载型铁催化剂上CO2加氢制低碳烯烃反应.结果显示,添加碱金属可显著提高铁催化剂上的CO2转化率和烯烃选择性.在经K和Rb修饰的Fe催化剂上,CO2转化率可达约40%,烯烃选择性达到50%以上,其中C2~C4烯烃收率超过10%.催化剂表征结果表明,碱金属促进了催化剂中碳化铁的生成,这可能是催化剂性能提高的一个关键原因.随着K含量由1 wt%增加至5 wt%,CO2转化率及烯烃选择性均升高.但K含量过高时,催化剂活性降低.这可能是由于催化剂比表面积和CO2化学吸附量降低所致.当K含量为5%~10%时,K-Fe催化剂上烯烃收率较高; 进一步添加适量的硼可进一步提高烯烃选择性,且CO2转化率下降不大.  相似文献   

6.
以介孔分子筛SBA-15为载体, 磷酸氢二铵为磷源, 硝酸镍为镍源, 硼酸为硼源, 采用共浸渍法制备了B-Ni2P/SBA-15催化剂前驱体, 然后采用程序升温氢气还原法, 制备了nP/nNi=0.8, B含量为0.35%-2.10%(w)的一系列B-Ni2P/SBA-15催化剂. 用X射线衍射(XRD)、N2吸附脱附、透射电子显微镜(TEM)和氨气程序升温脱附(NH3-TPD)等表征技术对催化剂的结构进行了研究, 以1%(w)二苯并噻吩(DBT)/十氢萘溶液为模型化合物, 在微型固定床反应器上对催化剂的加氢脱硫(HDS)性能进行了评价. 结果表明, B-Ni2P/SBA-15催化剂仍具有介孔结构, Ni2P为主要的活性物相. 适量B助剂的加入可促使Ni2P晶粒减小, 催化剂比表面积增加. 此外, 随着B含量的增加, B-Ni2P/SBA-15催化剂的总酸量也增加. 当反应压力为3.0 MPa, 反应温度由300 ℃升高至360 ℃时, B含量对Ni2P/SBA-15催化剂活性有明显的影响, B含量为1.40%(w)的B-Ni2P/SBA-15催化剂加氢脱硫活性最高. B-Ni2P/SBA-15催化剂上二苯并噻吩的加氢脱硫的反应机理以直接脱硫为主.  相似文献   

7.
Zn对非晶态Co-B催化剂巴豆醛选择加氢性能的影响   总被引:3,自引:0,他引:3  
考察了Zn的两种不同修饰方式对非晶态Co-B催化剂上巴豆醛液相加氢性能的影响, 并采用ICP, XRD, DSC, XPS等手段对催化剂进行了系统的表征. 实验表明, 当反应液中加入适量的ZnCl2时, Zn2+离子一方面通过在活性位上的选择性吸附抑制C=C键的加氢; 另一方面, Zn2+离子可通过极化作用使羰基活化, 令解离吸附氢对羰基的亲电进攻更容易, 从而提高羰基的加氢活性. 当ZnCl2/Co摩尔比为5%时, 羰基加氢产物巴豆醇的最高得率为36 mol%, 达到文献较高水平. 催化剂制备时加入的ZnCl2在催化剂中以Zn(OH)2的形式存在, 并使催化剂中的Co, B氧化物增多. 这些氧化物无选择性地覆盖了活性位, 使羰基和C=C键的加氢速率以相似的程度下降, 这样不仅不能有效提高巴豆醇的选择性, 还使催化剂活性急剧降低.  相似文献   

8.
以氢氧化镍为镍源, 亚磷酸为磷源, TiO2柱撑海泡石(Ti-Sep)为载体, 采用浸渍法制备了含磷化镍前驱体的样品, 然后采用程序升温还原法制备了Ni质量分数(w)为5%-25%的Ni2P/Ti-Sep催化剂, 并考察了其噻吩加氢脱硫性能. 采用X射线衍射(XRD)、N2吸附-脱附、热重分析(TGA)、透射电子显微镜(TEM)和傅里叶变换红外(FTIR)光谱对催化剂样品进行了表征. 结果表明, 海泡石经TiO2柱撑之后层间距增大, 比表面积和孔容都明显变大, 热稳定性增强, 活性组分Ni2P能很好地分散在海泡石层间及表面, 并且没有破坏海泡石的层状结构. 上述原因导致Ni2P/Ti-Sep催化剂的噻吩加氢脱硫活性明显优于Ni2P/Na-Sep(NaCl改性海泡石)和Ni2P/HCl-Sep(HCl改性海泡石)催化剂. 当Ni负载量为15% (w)时, Ni2P/Ti-Sep催化剂具有最好的噻吩加氢脱硫性能; 在反应温度为400℃时, 噻吩转化率达100%.  相似文献   

9.
采用吸附法制备了组合型Pt3Sn/Al2O3双金属催化剂, 将该催化剂用于芳香硝基化合物原位液相加氢一锅法合成N-烷基芳胺. 研究表明, 在503 K, 空速为7.5 h-1, 水体积分数为5%时, 1%(质量分数)Pt3Sn/Al2O3催化剂具有较高的催化性能, 硝基苯的转化率为100%, N-乙基苯胺和N,N-二乙基苯胺的总选择性为98.2%. 同时,该催化剂对原位液相加氢烷基化反应具有一定普适性, 本文研究的14 种芳香硝基化合物与低级脂肪醇反应,均具有较高的N-烷基化产率.  相似文献   

10.
苯酚加氢制备环己酮是合成纤维(尼龙)生产过程中的重要环节。采用微波法快速合成了具有层状结构的固体酸(磷酸氢锆,ZrHP)和ZrHP负载的Pd催化剂,利用X射线衍射(XRD)、扫描电子显微镜(SEM)、高倍透射电子显微镜(HRTEM)、氮气吸附-脱附、X射线光电子能谱(XPS)和程序升温脱附(TPD)技术对催化剂的结构、形貌和表面特性进行了详细的表征,并将其应用于苯酚选择性加氢制环己酮的反应中。研究发现:在温和条件(100℃,1.0 MPa H2)下,Pd/ZrHP比传统的氧化物(Al2O3、SiO2、MgO)、分子筛(H-Beta)、活性炭(XC-72)负载的Pd催化剂具有更高的活性和稳定性,催化剂表面Pd原子的比活性最高可达612.2 h-1,并且经过5次循环使用后催化剂无明显失活。结合表征结果推断,金属中心Pd与ZrHP表面的酸性位点之间的协同作用可能是影响苯酚加氢产物停留在环己酮阶段的关键因素。  相似文献   

11.
钴掺杂对碳化钼催化噻吩加氢脱硫性能的影响   总被引:2,自引:0,他引:2  
以MoO3和CoMo混合氧化物为前驱体, 制备了碳化钼和碳化钼-钴催化剂, 采用XRD, BET, SEM和XPS等技术对其进行了表征, 研究了Co掺杂对碳化钼催化剂噻吩加氢脱硫性能的影响. 结果表明, 掺入适量的Co后制得的CoMo双金属混合氧化物为MoO3和CoMoO4的两相混合体, 经CH4/H2气氛程序升温还原碳化反应生成共生共存的Co-Mo2C, Co以金属细颗粒的形态均匀地分散在生成的Mo2C组分之间. 在共生过程中含Co物种的掺入可降低制备碳化钼所需要的还原碳化温度, 使制备的碳化钼颗粒变小, 比表面积增大, 表面Mo2+含量增多, 从而对碳化钼的噻吩加氢脱硫活性有较好的促进作用, Co的添加量以Co/Mo摩尔比为0.2左右较为适宜. 用化学共沉淀法制得的Co-Mo2C共生共存体系的噻吩加氢脱硫反应活性, 好于由金属Co与Mo2C机械混合法制得的Co+Mo2C二相共存体系. 这表明当两个活性相共存时, 只有经过相互共生过程才能发挥其最佳的协同效应.  相似文献   

12.
采用多种物理化学手段研究了在模拟的轻型柴油车尾气中不同Co担载量及Cu掺杂的Co/ZSM-5催化剂的Co组分分散状态、可还原性、NO吸附脱附性质对C3H8选择性催化还原NOx性能的影响。结果表明,浸渍法制备的Co/ZSM-5催化剂上既有外表面上的Co3+和Co2+物种,也有孔内的Co2+离子。富氧条件下Co/ZSM-5催化剂上C3H8选择性催化还原NOx的活性主要与ZSM-5载体孔外表面分散的CoOx物种中的钴离子可还原能力和NO吸附脱附性能密切相关。Co/ZSM-5催化剂上适宜的Co担载量约为4.0wt%,低担载量时随Co担载量增加,表面CoOx物种中钴离子可还原能力增强,C3H8选择性催化还原NOx的低温转化活性增加;高担载量时,随Co担载量增加,单位Co离子的NO吸附量的减少以及催化剂表面活性中心数的减少,导致了Co/ZSM-5催化剂NOx的转化率和催化剂比速率(k)的下降。孔外表面Co3O4晶体的存在使催化剂表面产生较强的NO吸附,并在高温时有利于C3H8的氧化燃烧,使C3H8选择性催化还原NOx的活性降低。  相似文献   

13.
采用多种物理化学手段研究了在模拟的轻型柴油车尾气中不同Co担载量及Cu掺杂的Co/ZSM-5催化剂的Co组分分散状态、可还原性、NO吸附脱附性质对C3H8选择性催化还原NOx性能的影响。结果表明,浸渍法制备的Co/ZSM-5催化剂上既有外表面上的Co3+和Co2+物种,也有孔内的Co2+离子。富氧条件下Co/ZSM-5催化剂上C3H8选择性催化还原NOx的活性主要与ZSM-5载体孔外表面分散的CoOx物种中的钴离子可还原能力和NO吸附脱附性能密切相关。Co/ZSM-5催化剂上适宜的Co担载量约为4.0wt%,低担载量时随Co担载量增加,表面CoOx物种中钴离子可还原能力增强,C3H8选择性催化还原NOx的低温转化活性增加;高担载量时,随Co担载量增加,单位Co离子的NO吸附量的减少以及催化剂表面活性中心数的减少,导致了Co/ZSM-5催化剂NOx的转化率和催化剂比速率(k)的下降。孔外表面Co3O4晶体的存在使催化剂表面产生较强的NO吸附,并在高温时有利于C3H8的氧化燃烧,使C3H8选择性催化还原NOx的活性降低。  相似文献   

14.
Cobalt–silicon mixed oxide materials (Co/Si=0.111, 0.250 and 0.428) were synthesised starting from Co(NO3)2·6H2O and Si(OC2H5)4 using a modified sol–gel method. Structural, textural and surface chemical properties were investigated by thermogravimetric/differential thermal analyses (TG/DTA), XRD, UV–vis, FT-IR spectroscopy and N2 adsorption at −196 °C. The nature of cobalt species and their interactions with the siloxane matrix were strongly depending on both the cobalt loading and the heat treatment. All dried gels were amorphous and contained Co2+ ions forming both tetrahedral and octahedral complexes with the siloxane matrix. After treatment at 400 °C, the sample with lowest Co content appeared amorphous and contained only Co2+ tetrahedral complexes, while at higher cobalt loading Co3O4 was present as the only crystalline phase, besides Co2+ ions strongly interacting with siloxane matrix. At 850 °C, in all samples crystalline Co2SiO4 was formed and was the only crystallising phase for the nanocomposite with the lowest cobalt content. All materials retained high surface areas also after treatments at 600 °C and exhibited surface Lewis acidity, due to cationic sites. The presence of cobalt affected the textural properties of the siloxane matrix decreasing microporosity and increasing mesoporosity.  相似文献   

15.
An electrochemical procedure of anodic deposition of cobalt oxyhydroxide film on a glassy carbon substrate in an alkaline medium (i.e. pH 11.6) is described. The electrodeposited film was obtained either by voltage cycling or by potentiostatic conditions using non-deaerated 0.1 M Na2CO3 solutions containing 40 mM tartrate ions and 4 mM CoCl2. The effects on the film formation and growth, such as tartrate–cobalt ratio, pH, applied potential, etc. were widely evaluated. The electrodeposition process, under anodic conditions and moderately alkaline solutions, most likely involves a redox transition Co(II)→Co(III)/Co(IV) with destruction of the tartrate complex and formation of insoluble oxide/hydroxide cobalt species on the glassy carbon surface. The resulting cobalt oxyhydroxide films were characterised by cyclic voltammetry (CV) in 0.1 M NaOH solutions and by scanning electron microscopy (SEM) analysis after different strategies of preparation and various electrochemical treatments. The electrochemical activity of the deposited films was checked using various organic molecules as model compounds.  相似文献   

16.
Cobalt oxide nanoparticles (NPs) supported on porous carbon (CoOx@CN) were fabricated by one-pot method and the hybrids could efficiently and selectively hydrogenate phenol to cyclohexanol with a high yield of 98%.  相似文献   

17.
The insertion of a graphene layer between cobalt and a substrate modifies the morphology and the oxidation/reduction properties of supported cobalt particles. Co forms a relatively flat structure on ZnO and SiO2, whereas individual Co nanoparticles are formed after graphene coating of these substrates. The graphene layer moderates the formation of cobalt oxide in 5×10?7 mbar O2 and promotes the reduction of oxidized Co in H2 at lower temperature. Angle‐resolved XPS measurements indicate that this is mainly a consequence of the restricted interaction of cobalt with the oxide supports. After the low‐pressure redox treatments, the graphene layer maintains a relatively high quality with a small number of defect sites.  相似文献   

18.
The article presents the results of research on the hydrothermal synthesis of nanoscale oxide of cobalt and zirconium and their mixed oxide compositions. The synthesized samples have been characterized by the X-ray phase, scanning electron microscopy and nitrogen adsorption-desorption methods; the composition of the samples has been determined by chemical analysis methods, and their catalytic activity in the decomposition of hydrogen peroxide has been studied. It has been shown that during synthesis, highly dispersed cobalt and zirconium oxide are formed, and the sample of the composition (mol %): Co3O4(88)−ZrO2(12) has the highest specific surface area (181.2 m2/g) and the highest activity (K=6.18 ⋅ 10−2 s−1) against the decomposition of hydrogen peroxide. The increasing of the ZrO2 content in oxide compositions reduces their catalytic activity. The particle size in the synthesized samples is 7–38 nm.  相似文献   

19.
A platinum-lined, flowing autoclave facility was used to investigate the solubility behavior of cobalt(II) oxide (CoO) in deoxygenated ammonium and sodium hydroxide solutions between 22 and 288°C. Co(II) ion activity in aqueous solution was controlled by a hydrous Co(II) oxide when nitrogen was used for deoxygenation and by metallic cobalt when hydrogen was used. Measured cobalt solubilities are interpreted using a Co(II) ion hydroxo- and amminocomplexing model and thermodynamic functions for these equilibria were obtained from a least-squares analysis of the data. A common set of thermodynamic properties for the species Co(OH)+, Co(OH)2(aq) and Co(OH)(NH3)+ is provided to permit accurate cobalt oxide solubility calculations over broad ranges of temperature and alkalinity.  相似文献   

20.
Cobalt oxide sensing film was in situ prepared on glassy carbon electrode surface via constant potential oxidation. Controlling at 0.8 V in NaOH solution, the high-valence cobalt catalytically oxidized the reduced compounds, decreasing its surface amount and current signal. The current decline was used as the response signal of chemical oxygen demand (COD) because COD represents the summation of reduced compounds in water. The surface morphology and electrocatalytic activity of cobalt oxide were readily tuned by variation of deposition potential, time, medium and Co2+ concentration. As confirmed from the atomic force microscopy measurements, the cobalt oxide film, that prepared at 1.3 V for 40 s in pH 4.6 acetate buffer containing 10 mM Co(NO3)2, possesses large surface roughness and numerous three-dimensional structures. Electrochemical tests indicated that the prepared cobalt oxide exhibited high electrocatalytic activity to the reduced compounds, accompanied with strong COD signal enhancement. As a result, a novel electrochemical sensor with high sensitivity, rapid response and operational simplicity was developed for COD. The detection limit was as low as 1.1 mg L−1. The analytical application was studied using a large number of lake water samples, and the accuracy was tested by standard method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号