首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZrO2对CuO/γ—Al2O3催化剂CO氧化性能的影响   总被引:4,自引:2,他引:4  
用流动反应法、TPR、TPO和TG等技术研究了ZrO2的改性和CuO负载量对Cuo/y-Al2O3催化剂的氧化性能及还原行为的影响.实验结果表明,在低负载量(wCuO=15%以下)时,ZrO2对γ-Al2O3的改性可明显提高CuO/γ-Al2O3催化剂的CO氧化活性.ZrO2的存在可增加活性铜物种在载体表面的富集和有效地促进CU2+物种的氧化还原循环,增加CuO催化剂表面上铜物种的可还原量,从而促进CuO催化剂的氧化活性.  相似文献   

2.
采用X射线衍射(XRD),程序升温还原(TPR)等表征手段考察了TiO2改性对CuO(或NiO)在γ-Al2O3表面上分散以及还原性能的影响,同时检测了这些改性的催化剂在CO+O2反应中的活性。结果表明:TiO2的改性使得CuO和NiO在γ-Al2O3载体上的分散复杂化,产生了多种状态的氧化铜(氧化镍)物种。当负载量低于其在γ-Al2O3上的分散容量(0.56 mmol Ti4+/100 m2 γ-Al2O3)时,TiO2的加入主要是抑制了CuO和NiO在γ-Al2O3载体上的分散;而当负载量远大于其分散容量时,出现了CuO和NiO在晶相TiO2(锐钛矿)上的分散。无论其负载量如何,TiO2的加入促进了CuO的还原。因此,在250 ℃的CO+O2反应中,改性的催化剂中具有更多的活性位,因而显示出更高的活性;相反,TiO2的改性则抑制了NiO的还原。因此,在350 ℃的CO+O2反应中,可还原的氧化镍的量明显少于未经改性的催化剂,导致改性催化剂的活性降低。  相似文献   

3.
采用浸渍法在γ-Al2O3载体上分步负载改性剂Mn2O3和活性组分CuO,制备了一系列不同配比的CuO/Mn2O3/γ-Al2O3催化剂,并运用CO+O2模型反应、XRF、XRD、H2-TPR、in-situ FTIR等手段表征了催化剂的活性和物理化学性质。活性测试结果表明,锰氧化物对γ-Al2O3载体的改性能有效地提高CuO/γ-Al2O3催化剂在CO+O2模型反应中的催化活性。XRD结果表明,锰氧化物对γ-Al2O3载体的改性可以促进氧化铜在载体表面的分散,从而提高了分散态氧化铜的含量,不过这与活性变化的趋势并不完全一致。进一步结合H2-TPR、in-situ FTIR表征结果 ,我们发现,分散态铜、锰氧化物的还原性质也是影响其催化活性的重要因素,催化剂中分散态铜、锰物种越容易被还原,其对CO+O2模型反应的催化活性就越高。  相似文献   

4.
采用色谱-微反流动法反应装置考察了w%CuO/15%TiO2/γ-Al2O3催化剂对NO+CO的反应活性;催化剂经空气氛或氢气氛预处理后,NO转化率达100%的反应温度分别是325和275℃;XRD仅能检测到γ-Al2O3晶相,负载15%CuO后可以检测到微弱的CuO晶相;H2-TPR能检测到2个CuO的还原峰(α和β峰),将其归属于高度分散的CuO分别在裸露的γ-Al2O3和TiO2/γ-Al2O3载体上的还原;原位红外分析结果表明催化剂经空气氛或氢气氛预处理后,吸附NO+CO反应气后,反应的中间产物N2O出现的温度分别为200和150℃。  相似文献   

5.
钛铝载体的合成及负载CuO对NO催化性能研究   总被引:1,自引:0,他引:1  
以TiCl4为原料合成了TiO2/[[alpha]]-Al2O3载体. 在色谱-微反流动法反应装置上考察了CuO/15%(w, 下同)TiO2/[alpha]-Al2O3系列催化剂对NO+CO 的反应性能. 结果表明上述催化剂对NO+CO 反应表现出较好的活性, 其中12%CuO/15%TiO2/[alpha]-Al2O3反应活性最佳. 空气和H2 预处理后, NO 完全转化的温度分别为300C[[deg]]和275C[deg].通过H2-TPR、XRD 和FT-IR 等技术表征, 发现适量TiO2能促进CuO 在钛铝载体上的分散. TPR 结果显示12%CuO/15%TiO2/[alpha]-Al2O3在整个TPR 过程中出现四个还原峰, 琢和酌还原峰分别是钛铝载体表面裸露的TiO2上高度分散的CuO 和晶相CuO 的还原;茁和啄还原峰为钛铝载体上高度分散的CuO 和晶相CuO 的还原. FT-IR实验表明NO和CO 在经H2气氛预处理的催化剂表面上吸附较强, 且生成了N2O 和NO2等物种;NO+CO混合气在经空气和H2预处理的催化剂表面吸附时, 出现了N2O吸收峰, 峰温分别为200C[deg]和150C[deg].  相似文献   

6.
采用XAFS方法研究浸渍法制备并于低温焙烧的CuO/γ-Al2O3催化剂的局域结构.对于CuO负载量小于单层分散阈值的CuO/γ-Al2O3(0.4 mmol/100 m2),结果表明,CuO物种是以层状分散的孤立原子簇存在于γ-Al2O3载体表面,其第一近邻Cu-O配位环境的结构与晶态CuO的相似,键长和配位数分别为0.195 nm和4.对于CuO负载量等于单层分散阈值的CuO/γ-Al2O3(0.8 mmol/100 m2),已有少量的CuO纳米颗粒生成.对于CuO负载量大于单层分散阈值的CuO/γ-Al2O3(1.2 mmol/100 m2),其结构与多晶CuO的相近.基于CuO在γ-Al2O3载体上的三种不同分散状态的结构特点,我们提出了CuO/γ-Al2O3催化剂的结构模型.  相似文献   

7.
采用XAFS方法研究浸渍法制备并于低温焙烧的CuO/γ-Al2O3催化剂的局域结构.对于CuO负载量小于单层分散阈值的CuO/γ-Al2O3(0.4mmol/100m2),结果表明,CuO物种是以层状分散的孤立原子簇存在于γ-Al2O3载体表面,其第一近邻Cu-O配位环境的结构与晶态CuO的相似,键长和配位数分别为0.195nm和4.对于CuO负载量等于单层分散阈值的CuO/γ-Al2O3(0.8mmol/100m2),已有少量的CuO纳米颗粒生成.对于CuO负载量大于单层分散阈值的CuO/γ-Al2O3(1.2mmol/100m2),其结构与多晶CuO的相近.基于CuO在γ-Al2O3载体上的三种不同分散状态的结构特点,我们提出了CuO/γ-Al2O3催化剂的结构模型.  相似文献   

8.
采用等容浸渍法制备改性脱水催化剂,通过H2-TPR、Pyridine-IR、还原态NH3-TPD、XRD等表征手段,以及目标反应浆态床CO+H2合成二甲醚,研究了催化剂的还原性能以及酸中心分布与反应性能之间的关系。H2-TPR结果表明,在脱水催化剂γ-Al2O3、V2O5/γ-Al2O3和Sm2O3/γ-Al2O3上不出现还原峰,V2O5、Sm2O3的加入改善了复合催化剂中Cu的还原性能,促进了甲醇催化剂的还原。Pyridine-IR表明,V2O5和Sm2O3的加入对L酸、B酸的量影响不大。还原态NH3-TPD说明V2O5和Sm2O3的加入改变了酸中心的分布,增加了弱酸中心的比率。XRD结果发现,V2O5和Sm2O3均匀分散在γ-Al2O3上,没有新的物种生成。二甲醚合成目标反应的结果表明,改性后催化剂的反应活性增强,合成反应中CO转化率、二甲醚的选择性都得到提高。V2O5和Sm2O3的添加增加了弱酸中心数量,促进了脱水活性,从而提高了复合催化剂合成二甲醚的活性和选择性。  相似文献   

9.
采用程序升温还原技术(TPR)研究CuO-Ag2O/γ-Al2O3双组分及其单组分催化剂的还原特性以及热处理温度对其还原性能的影响。发现不同负载量的Cuo-Ag2O/γ-Al2O3催化剂的还原特性有明显差异, 反映出催化剂表面存在着不同种类的铜物种。Ag2O的存在, 使催化剂的TPR峰位与单组分CuO/γ-Al2O3的TPR曲线产生明显差异, 还原峰发生位移, 随Ag2O添加量的增加, 位移增大。对苯的完全氧化反应结果表明, 催化剂的氧化活性次序为:CuO-Ag2O/γ-Al2O3>CuO/γ-Al2O3>Ag2O/γ-Al2O3。热处理温度升高, 使催化剂表面铜物种分散状态及其还原性能发生变化。从500~900℃, 存在一个使铜物种达到最佳分散态的温度。讨论了负载于γ-Al2O3载体上的CuO-Ag2O双组分及其单组分催化剂在还原过程中金属与载体, 金属与金属间的相互作用以及热处理温度对其还原性能的影响。  相似文献   

10.
采用XRD,TPR,CO吸附in-situIR,CO氧化反应等对CuO/γ-Al2O3催化剂经CO处理前后的结构、组成和催化性能进行了研究。结果表明,经CO在250℃下处理1h后CuO/γ-Al2O3催化剂中出现了分散态Cu 物种,该物种的产生使催化剂的活性明显提高。  相似文献   

11.
用浸渍法制备了CuO/γ-Al2O3催化剂和CeO2改性的CeO2-CuO/γ-Al2O3催化剂,考察了焙烧温度对CuO/γ-Al2O3和CeO2-CuO/γ-Al2O3催化剂C3H6还原NO反应活性的影响,以及CeO2的添加量对CeO2-CuO/γ-Al2O3催化剂C3H6还原NO反应活性的影响。结果表明,在200 ℃~500 ℃的焙烧温度范围内,焙烧温度对CuO/γ-Al2O3催化剂的活性影响很小;在500 ℃~800 ℃的焙烧温度范围内,随着焙烧温度的升高CuO/γ-Al2O3催化剂的活性急剧下降,由XRD物相测定结果可知,归因于对反应表现惰性的尖晶石CuAl2O4相的生成。当焙烧温度为500 ℃时,CeO2的添加对CuO/γ-Al2O3催化剂的活性影响很小;当焙烧温度为800 ℃时,CeO2的添加对CuO/γ-Al2O3催化剂有明显的助催化作用,当Ce和Cu的摩尔比为1∶10时,NO转化率较为理想。  相似文献   

12.
在介质阻挡等离子体放电(DBD)辅助催化剂(6%CuO/15%TiO2/γ-Al2O3,6%CuO/5%CeO2/15%TiO2/γ-Al2O3)反应装置上,研究了4种不同反应条件下(NO+CH4,NO+CH4+O2,NO+CH4+NTP,NO+CH4+O2+NTP)NO和CH4反应,采用BET、XRD、H2-TPR和XPS等手段对催化剂进行了表征.结果表明在上述4种反应条件下,对于NO+CH4的反应,O2的存在有利于NO脱除,在等离子体条件下,O2的加入对NO的转化有所抑制;而等离子体的活化极大增强了NO的低温脱除活性.在等离子体存在条件下,6%CuO/5%CeO2/15%TiO2/γ-Al2O3(6Cu5Ce15TA)对NO的转化率都优于6%CuO/15%TiO2/γ-Al2O3(6Cu15TA).BET结果显示添加TiO2和CeO2于γ-Al2O3表面后,比表面积都有少量降低;而各载体负载6%CuO后比表面积也有所下降.XRD结果表明6Cu15TA和6Cu5Ce15TA催化剂由锐钛矿相TiO2组成,CuO在各催化剂表面呈现高度分散.H2-TPR数据和XPS实验结果显示负载CuO后,催化剂表面的铜物种由高度分散的CuO和嵌入到CeO2或TiO2晶格中Cu2+所组成.6Cu5Ce15TA表面含有较6Cu15TA多的Cu+,从而增强了NO的脱除活性.  相似文献   

13.
采用真空浸渍法在负载型纳米ZrO2-Al2O3复合载体上负载NiO,并用X射线衍射考察了NiO在复合载体上的分散周值.结果表明,该分散阈值与ZrO2-Al2O3复合载体中ZrO2的负载量有关,当ZrO2的负载量为0.60 g/g时,NiO的分散阈值达到最高值0.315 g/g.热重-微分热重和程序升温脱附结果表明,NiO在不同ZrO2负载量的复合载体表面形成不同的相互作用和分布状态,复合载体中ZrO2的负载量影响催化剂表面活性中心的种类和对CO2的吸附.同时考察了不同ZrO2负载量的复合载体Ni基催化剂在CO2重整CH4反应中的活性和稳定性.  相似文献   

14.
NiO在γ-Al_2O_3及 TiO_2/γ-Al_2O_3载体上的表面存在状态   总被引:1,自引:0,他引:1  
本文采用 LRS, XRD, UV-DRS, TPR考查了γ-Al2O3上 TiO2的分散容量,分散态 Ti4+离子的配位环境; NiO在经 TiO2改性后的γ-Al2O3载体上的分散容量。结果表明:( 1) TiO2在γ-Al2O3表面的分散容量约为 0.62 mmol/100m2γ-Al2O3,当 TiO2含量低于该分散容量时 Ti4+在γ-Al2O3载体表面以嵌入形式呈离子态分布;而含量高于分散容量时还有结晶态的 TiO2出现。( 2) NiO在 TiO2/γ-Al2O3载体表面的分散容量约为 1.1 mmol/100m2γ-Al2O3,比之在γ-Al2O3载体表面的分散容量 (1.5mmol/100m2γ-Al2O3)要低,这是由于γ-Al2O3表面上部分空位被 Ti4+离子占据。用表面相互作用的“嵌入模型” (Incorporation Model)讨论了这些结果。  相似文献   

15.
CuO/Ce0.5Ti0.5O2的制备与表征及其对NO+CO反应的催化活性   总被引:2,自引:1,他引:1  
以Ce0.5Ti0.5O2为载体, 采用浸渍法制备了不同负载量的CuO/Ce0.5Ti0.5O2催化剂, 通过TPR、XRD和激光Raman光谱等技术对其进行了表征, 并在色谱-微反装置上考察了催化剂对NO+CO反应催化性能. 结果表明, CuO/Ce0.5Ti0.5O2催化剂对NO+CO反应的活性与CuO负载量有关; 500 ℃焙烧的催化剂, 当CuO的负载量(w)为22%时, 催化剂的活性最好; 14%CuO/Ce0.5Ti0.5O2在700 ℃焙烧具有最佳催化活性, 这可能与复合载体形成了CeTi2O6的结构有关. TPR结果表明, CuO在Ce0.5Ti0.5O2上出现了四种还原能力不同的物种, α和β峰是载体表面高度分散的CuO物种, γ峰是与Ce0.5Ti0.5O2相互作用较强的孤立CuO晶簇的还原峰, δ峰是载体表面晶相CuO的还原峰; XRD结果表明700 ℃焙烧的样品中已出现了新复合氧化物CeTi2O6的晶相峰, 随焙烧温度的升高, 此晶相峰也变得更加明显, 这说明高温焙烧有利于Ce与Ti发生固相反应而形成CeTi2O6结构; Raman结果表明, 焙烧后的Ce0.5Ti0.5O2并不是简单的TiO2和CeO2的复合, 而是形成了新的晶相结构, 这也进一步验证了CeTi2O6结构的生成.  相似文献   

16.
一般认为稀土钙钛矿型La0.8Sr0.2CoO3是CO氧化、碳氢(HC)化合物完全氧化和NOx还原的良好氧化物催化剂.用复合硝酸盐溶液浸渍γ-Al2O3制取负载型催化剂La0.8Sr0.2CoO3/γ-Al2O3(LSC/γ-Al2O3),负载量15%(质量分数).采用XRD, TPR, BET和二甲苯完全氧化催化剂活性测试等手段,研究了CoAl2O4的形成过程,催化剂经750 ℃焙烧, Co(Ⅱ)已进入γ-Al2O3体相,并有大量的CoAl2O4尖晶石形成. 若在γ-Al2O3表面涂敷一层以MgAl2O4为主相的覆盖层,在一定程度上能够阻挡Co2+离子进入γ-Al2O3的晶格,并有效地生成出LSC活性相,提高了其完全氧化的催化活性.  相似文献   

17.
甲醇自热重整制氢用Cu-ZnO/Al2O3催化剂的研究   总被引:4,自引:0,他引:4  
 研究了负载于堇青石蜂窝陶瓷载体上的Cu-ZnO/Al2O3催化剂对甲醇自热重整制氢反应的催化性能,考察了铜负载量和反应条件对催化剂活性和反应速率的影响,采用XRD和H2-TPR技术对催化剂的分散状态和还原进行了表征. 结果表明,铜负载量较低时铜处于较均匀的分散状态,容易被还原,γ-Al2O3的引入促进了铜的还原. 还原后的低铜负载量的样品上,在空速为4000~12000 h-1和氧/醇摩尔比为0.3的条件下,甲醇的转化率接近100%,H2的生成率和CO2的选择性较高. 证实了还原的铜为反应的活性位.  相似文献   

18.
镍盐前体对Ni/γ-Al2O3催化剂催化加氢活性的影响   总被引:2,自引:0,他引:2  
用X射线衍射、紫外-可见漫反射光谱、程序升温还原、CO化学吸附和微反应测试等方法研究了不同镍盐前体制备的负载型Ni/γ-Al2O3催化剂的结构和催化α-蒎烯加氢活性.结果表明,用醋酸镍前体制备的催化剂的催化加氢活性远高于用硝酸镍前体制备的催化剂,并且这种催化加氢活性的差异与不同前体制备的Ni O/γ-Al2O3样品表面Ni2 的分散状态及还原度密切相关.当Ni2 负载量远低于其在γ-Al2O3载体表面上的分散容量时,Ni2 优先嵌入载体表面四面体空位,随着Ni2 负载量的增加,嵌入载体表面八面体空位的Ni2 的比例增大.由于醋酸根阴离子对γ-Al2O3载体表面四面体空位的屏蔽效应大于硝酸根阴离子,在醋酸镍前体制备的Ni O/γ-Al2O3样品表面,Ni2 倾向于嵌入载体表面八面体空位且易被还原为金属态Ni0,故用醋酸镍前体制备的Ni/γ-Al2O3催化剂的催化α-蒎烯加氢活性高于用硝酸镍前体制备的催化剂.  相似文献   

19.
CuO/Ti0.5Zr0.5 O2催化剂上NO+CO反应活性的研究   总被引:1,自引:0,他引:1  
以Ti0.5Zr0.5O2复合氧化物为载体,采用浸渍法制备了不同负载量的CuO/Ti0.5Zr0.5O2(TZ)催化剂,考察了催化剂对NO的反应活性,并用TPR、TG-DTA和NO-TPD等技术对催化剂进行了表征。结果表明,CuO的负载量和焙烧温度对催化剂的活性均有影响。30%CuO/Ti0.5Zr0.5O2(500℃,2h)在反应温度为400℃时NO转化率为100%。TPR结果表明,CuO负载量≤12%时,在TPR上出现了2个还原峰(即α和β峰);而进一步提高CuO的负载量,出现了γ还原峰,推测α峰为高度分散Cu物种的还原,β峰为孤立的Cu物种的还原,γ峰则为晶相CuO的还原峰。TG-DTA图谱显示在725℃左右的放热峰是ZrTiO4晶化过程的完成。NO-TPD结果表明NO吸附在TZ上的热脱附过程中,出现2个脱附峰;而NO吸附在12%CuO/TZ上,500℃和750℃焙烧的催化剂上出现3个脱附峰;而在850℃和950℃焙烧的催化剂上只出现2个脱附峰,且NO在上述不同焙烧温度的催化剂上的脱附峰温均低于载体,这表明NO吸附在CuO/TZ催化剂上比吸附在Ti0.5Zr0.5O2上更容易脱出和分解。  相似文献   

20.
糠醛液相加氢用Mo改性Ni-B/TiO2-Al2O3(S)非晶态合金催化剂   总被引:1,自引:0,他引:1  
以溶胶-凝胶法制备复合载体TiO2-Al2O3(S)负载非晶态Ni-B合金用于催化糠醛液相加氢反应, 并研究了Mo对催化剂的改性作用. 采用ICP(等离子发射光谱)、DSC(差示扫描量热)、N2吸附、TPR(程序升温还原)和TPD(程序升温脱附)等技术对催化剂进行了表征. 研究结果表明, 与单一氧化铝载体相比, 复合载体负载的Ni-B合金催化性能明显提高, 这是由于在同样的制备条件下, 复合载体负载的Ni-B中Ni含量更高, 同时TiO2分散到了γ-Al2O3的孔中, 堵住了部分细孔, 有利于产物糠醇扩散出来, 防止深度加氢. Mo能提高Ni-B/TiO2-Al2O3(S)的热稳定性, 增大Ni的负载量, 使部分氧化态物种变得易于被还原, 表面出现新的加氢活性中心, 并增加化学吸附中心数, 减弱吸氢强度, 因而显著提高了Ni-B/TiO2-Al2O3(S)的活性; Mo添加使Ni-B/TiO2-Al2O3(S)的平均孔径及总孔容均增大, 有利于产物糠醇扩散出来, 还能使糠醇更易从催化剂的表面脱附, 防止其深度加氢, 因而提高了糠醇的选择性. 当Mo含量为1.25%时, 糠醛转化率、糠醇选择性都达到了100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号