首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When the two end groups of a linear polymer chain are absorbed on a solid surface,the polymer chain forms the "loop" conformation.Investigation has been made on the conformational statistics of a model loop chain by the normal landom walk (NRW) on a lattice confined in the half-infinite space.Based on the conformational distribution function of the NRW model tail chain,it is easy to deduce an analytical formula expressing the conforma-tional number of the model loop chain.It was found that the ratio of the conformational number of the model loop chain to that of the free chain varies with the power function N-2/3 when the chain length N→∞ The same result was obtained by means of the recursion equation.The ratio of the mean square end-to-end distance h2 for the model loop chain to its mean square bond length I2 is 2N/3 Compared with the free chain with the same length N,the mean square end-to-end distance of the model loop chain contracts to a certain extent.The basic relationships deduced were support  相似文献   

2.
The SAW tail chains were studied.The permitted conformational number and the mean square end-to-end distance as a function of the chain length N for such a model tail chain were obtained by computer simulations,including the exact enumeration and Monte Carlo method.These two basic quantities obeyed the relations deduced from the scaling law.The critical exponents and the lattice indexes were given by fitting the data of the computer experiments.It has been shown that there is a certain extension in the size of the SAW tail chains as well as the NRW tail chains in the direction normal to the wall.The normal component of the mean square end-to-end distance is almost twice as large as the parallel component of the short chain SAW.However,as N→∞,the effect of the wall on the chain conformation becomes a little weak because of the self-avoiding behavior for the model.That is quite different from the case of the NRW tail chain.  相似文献   

3.
For a system of flexible polymer molecules, the concepts of two concentrations, namely the segmental and the molecular concentrations, have been proposed in this paper. The former is equivalent to the volume fraction. The latter can be defined as the number of the gravity centers of macromolecules in a unit volume. The two concentrations should be correlated with each other by the conformational function of the polymer chain and should be discussed in different thermodynamic equations. On the basis of these concepts it has been proved that the Flory-Huggins entropy of mixing should be the result of the mixing “ideal gases of the gravity centers of macromolecules“. The general correlation between the free energy of mixing and the scattering function (structural factor) of polymer blends has been studied based on the general fluctuation theory. When the Flory-Huggins free energy of mixing is adopted, the de Gennes scattering function of a polymer blend can be derived.  相似文献   

4.
吴奇 《高分子科学》2014,(11):1575-1580
The captioned question has been addressed by the steric effect; namely, the adsorption of proteins on a surface grafted with linear polymer chains decreases monotonically as the grafting density increases. However, there is no quantitative and satisfactory explanation why the adsorption starts to increase when the grafting density is sufficiently high and why polyethylene glycol(PEG) still remains as one of the best polymers to repel proteins. After considering each grafted chain as a molecular spring confined inside a "tube" made of its surrounding grafted chains, we estimated how its free energy depends on the grafting density and chain length, and calculated its thermal energy-agitated chain conformation fluctuation, enabling us to predict an adsorption minimum at a proper grafting density, which agrees well with previous experimental results. We propose that it is such a chain fluctuation that slows down the adsorption kinetically.  相似文献   

5.
 It has been an established practice to estimate the Θ-temperature of a polymer solution from thedisappearance of the interchain interactions (A2 = 0) Recently, in studies of the temperature dependence ofthe chain conformation in solution, we found that the change of the chain conformation clearly underwentthree different stages which could be viewed as the "gas". "liquid" and "solid" states in terms of the freedomof the "blobs" on the chain. The transition temperature between the first and second stages corresponds nicely to the Θ-temperature determined by the conventional method.It reveals,for the first time,that the Θ-temperature can be deduced from the conformation change of a single polymer chain in solution,which is important not only in conception,but also in practice.  相似文献   

6.
The surface of nano-SiO2 was modified by being encapsulated with hydroxy-propyl-methyl cellulose (HPMC), and then co-grafted with acrylates. The grafting conditions, such as pH of the medium, and initiator concentration have been studied. The modified nano-SiO2 particles were characterized by TEM, DSC and FT-IR spectra. TEM images show that the surface of the nano-particles has been successfully modified by a thick layer of film-like polymer in this way. The DSC results show that the decomposition temperature of modified nano-particles of SIO2 is 90 ℃ higher than that of grafted-on polymer. According to the FT-IR spectra, It is convinced that poly-methyl methacrylate ( PMMA ) and poly-acrylic butyl-ester ( PBA ) were co-grafted onto the surface of nano-SiO2.  相似文献   

7.
Lei Ye  Yue Xie  邱东  Ying Kan  张正东 《高分子科学》2014,(11):1515-1523
The effect of particle shape on the rheological behavior of small particle-large polymer chain mixture solutions has been investigated with two model colloidal silica dispersions, one of which is ellipsoidal(BINDZIL20/440) and the other is spherical(TM40). It was found that BINDZIL20/440 series showed shear-thickening at lower shear rates and had a lower upper limit in PEO concentration to demonstrate shear-thickening phenomena. The particle shape was identified as the major factor accounting for these differences. This work enables one to control the rheological behavior of colloid-polymer mixture through simply changing particle geometry instead of performing surface modifications, which could be especially useful in cases where only certain chemicals are allowed, for example in vivo applications.  相似文献   

8.
We focus on the distribution and free energy of a wormlike polymer confined between two parallel hard walls.The variation in the distribution and free energy of the wormlike chain as the spacing between the walls decreases(or as the total contour length of the wormlike chain increases or as the persistence length of the chain increases)is simulated.The main reason for these changes is a degradation of the long wormlike chain into a Gaussian long chain under weak confinement.  相似文献   

9.
Rubber elasticity theory is of fundamental importance in polymer science. The traditional theory is athermal, describing rubber deformation behavior as entropy elasticity without an internal energy contribution. It has been found experimentally, however, that the internal energy contribution is not zero. In the present study we have used conformational elasticity theory to calculate the internal energy contribution of polydimethylsiloxane (PDMS) and results obtained are consistent with a number of experimental observations.  相似文献   

10.
The lamellar structure of a thermotropic aromatic polyester with flexible spacer has beenstudied by using transmission electron microscopy. It was found that the lamellar structure couldbe observed in the crystalline samples of this semirigid polymer crystallized from different states.The thickness of lamellae is around 10 nm, which is similar to that of the conventional polymersof flexible chain molecules. The molecular chains in the lamellae are oriented in the thicknessdirection as determined by electron diffraction. The possibility of molecular chains folding in the lamellae has been discussed.  相似文献   

11.
The sliding friction of various kinds of hydrogels has been studied and it was found that the frictional behaviors ofthe hydrogels do not conform to Amonton's law F=μW which well describes the friction of solids. The frictional force andits dependence on the load are quite different depending on the chemical structures of the gels, surface properties of theopposing substrates, and the measurement condition. The gel friction is explained in terms of interracial interaction, eitherattractive or repulsive, between the polymer chain and the solid surface. According to this model, the friction is ascribed tothe viscous flow of solvent at the interface in the repulsive case. In the attractive case, the force to detach the adsorbing chainfrom the substrate appears as friction. The surface adhesion between glass particles and gels measured by AFM showed agood correlation with the friction, which supported the repulsion-adsorption model proposed by the authors.  相似文献   

12.
It has been an established practice to estimate the Θ-temperature of a polymer solution from thedisappearance of the interchain interactions (A_2 = 0) Recently, in studies of the temperature dependence ofthe chain conformation in solution, we found that the change of the chain conformation clearly underwentthree different stages which could be viewed as the "gas". "liquid" and "solid" states in terms of the freedomof the "blobs" on the chain. The transition temperature between the first and second stages corresponds nicelyto the Θ-temperature determined by the conventional method. It reveals, for the first time, that the Θ-temperature can be deduced from the conformation change of a single polymer chain in solution, which isimportant not only in conception, but also in practice.  相似文献   

13.
The thermal induced topography change in a model system consisting of a polymer film on a Si substrate capped by a thin metal layer has been studied by using AFM. Regular lateral patterns over large areas were observed on the surface when the system was heated to a sufficiently high temperature. 2D-FFT analysis to the AFM images indicates that the patterns are isotropic and have well defined periodicities. The periodicities of the characteristic patterns are found to depend strongly on the annealing temperature. The study of the ki-netics of the formation reveals that such a topography forms almost instantaneously once the critical tempera-ture is reached. It is suggested that this wave-like surface morphology is driven by the thermal expansion co-efficient mismatch of the different layers. This method for generating regular wave-like patterns could be used as a general method for patterning various organic materials into micro/nanostructures.  相似文献   

14.
In a mixture of colloidal particles and polymer molecules,the particles may experience an attractive"depletion force"if the size of the polymer molecule is larger than the interparticle separation.This is because individual polymer molecules experience less conformational entropy if they stay between the particles than they escape the inter-particle space, which results in an osmotic pressure imbalance inside and outside the gap and leads to interparticle attraction.This depletion force has been the subject of several studies since the 1980s,but the direct measurement of this force is still experimentally challenging as it requires the detection of energy variations of the order of k_BT and beyond.We present here our results for applying total internal reflection microscopy(TIRM) to directly measure the interaction between a free-moving particle and a flat surface in solutions consisting of small water-soluble organic molecules or polymeric surfactants.Our results indicate that stable nanobubbles(ca.150 nm) exist free in the above aqueous solutions.More importantly,the existence of such nanobubbles induces an attraction between the spherical particle and flat surface.Using TIRM,we are able to directly measure such weak interaction with a range up to 100 nm.Furthermore,we demonstrate that by employing thermo-sensitive microgel particles as a depleting agent,we are able to quantitatively measure and reversibly control k_BYT-scale depletion attraction as function of solution pH.  相似文献   

15.
16.
For two-phase polymer blend systems, the phase inversion will take place as the blendcomposition is changed. In this paper a mechanical model has been proposed to describe themodulus-composition relation in the phase inversion region. The application of the mechanicalmodel to two polyurethane blend systems has been studied. It was found that the theoreticalprediction for the modulus-composition relation is quite consistent with the experimentalresults. Furthermore, the characteristics of the phase inversion can be determined uniquelyby the parameters involved in the mechanical model.  相似文献   

17.
The intrinsic viscosity [ η], Huggins constant (KH), [ η]0, α3 and flow activation energy values of nylon 6 have been measured in water/m-cresol (0/100-20/80) systems at different temperatures (20-60℃). It has been found that the intrinsic viscosity, [η]0 and α3 increase with the increase in water contents in m-cresol up to 15% and then decrease. They increase with the increase in temperature irrespective of solvent composition. It has been noted that the percent increase of α3 is the highest at 60℃ and the lowest at 20℃ for a particular solvent system. The intrinsic viscosity data obey Arrhenius equation over the considered conditions. The activation energy and the KH values decrease very sharply with the addition of water,giving a minimum value at 15% of water and then increase slowly. The variation of all the parameters has been explained in terms of variation in thermodynamic quality of solvent with the addition of water to m-cresol and change in temperature,resulting in the change of conformational and orientational properties of polymer molecules. This change of solvent quality also results in variation of selective sorption of solvent over the polymer, such as hydrogen bonding, etc.  相似文献   

18.
~(13)C-NMR chemical shifts of model compound of a novel side chain liquid crystalline polymer, poly 2.5-his (4-alkoxybenzoyloxy) styrene , have been assigned in this study. Moreover, by using high-resolution solid-state CP/MAS (cross polarization/magic angle spinning) technique, the spectrum shows that in the crystalline state the ester linkage has a conformation nearly perpendicular to the either side of ring planes, and that the alkoxy groups are not fully in zigzag form. The possible conformational changes around the mesogens from the solid state to the mesophase are discussed.  相似文献   

19.
——Phase Behavior of the Aqueous Solution of Poly(vinyl methyl ether) Sensitive to Temperature and the Modification of the Behavior by Using Poly(acrylic acid) The phase behavior of the aqueous solution of poly(vinyl methyl ether) (PVME) sensitive to temperature and the modification of the behavior by using poly(acrylic acid) (PAA) have been studied by ultrasonic attenuation measurements and fluorescence probe techniques. It has been observed that PVME solution is transparent at room temperature and becomes turbid upon heating. The solution turns clear again as soon as the temperature is decreased to room temperature. The heating and cooling process can be repeated for many times. The phase behavior of the solution sensitive to temperature is attributed to the conformational changes of the polymer. PVME may adopt an open coil conformation at room temperature. With this conformation, the polymer is well miscible with the solvent, water, and thereby the system is a real solution. The polymer may adopt a compact coil conformation when the temperature is higher than a specific value, which is called the LCST (the lower critical solution temperature) of PVME. In this case, the polymer tangles to each other and forms various aggregates, which can scatter incident light and ultrasonic waves greatly, resulting in the phase separation. Introduction of PAA decreases the temperature sensitivity of the phase behavior of the polymer. The nature of the inhibition is attributed to the complexation of PAA with PVME and the strong hydrophilicity of PAA. Results from fluorescence probe studies are in accordance with those from ultrasonic attenuation measurements, indicating again that the ultrasonic attenuation method can be successfully used for the qualitative studies of polymer conformations and complexation between polymers.  相似文献   

20.
SOLVENT QUALITY AND SOLUTION BEHAVIOR OF NYLON 12   总被引:1,自引:0,他引:1  
The refractive index increment,dynamic and static laser light scattering,intrinsic viscosity[η]and Huggins constant(K_H)of nylon 12 have been measured in m-cresol and sulphuric acid/water system at 10-60℃.The intrinsic viscosity,R_H,R_g,A_2,and(~2)~(1/2)(calculated from viscosity data)and"a"values of nylon 12 are found to be higher in m-cresol than in sulphuric acid.All these parameters decrease with the increase in water contents in sulphuric acid.The refractive index increment,K_H and activation energy show an opposite trend to that of[η].The intrinsic viscosity,R_H,R_g,A_2, and(~2)~(1/2) have maximum values around 30-40℃in sulphuric acid/water system,whereas in m-cresol they fall at about 20℃.It has been concluded that the variation in size,interaction parameter(second virial coefficient),[η]and K_H of the polymer solutions with the alteration in solvent composition and temperature are the out come of change in thermodynamic quality of solvents,selective adsorption,hydrogen bonding and conformational transitions.It has also been concluded that the increase in temperature first enhances the quality of the solvent,encourages hydrogen bonding and specific adsorption, and then deteriorates,bringing conformational transitions in the polymer molecules.However,the addition of water to sulphuric acid continuously deteriorates the solvent quality.This characteristic of the solvent system brings conformational changes in the polymer especially at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号