首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
本工作利用圆二色光谱研究了Ag+与Hg2+对4种代表性G-四链体DNA结构的破坏作用。结果表明Ag+可能通过与碱基G螯合从而破坏G-四链体结构;Hg2+能通过形成T-Hg2+-T碱基对,及其他方式破坏G-四链体结构。含巯基(-SH)的半胱氨酸与Ag+与Hg2+可以发生较强的配位作用,从而使被Ag+与Hg2+破坏后的G-四链体DNA结构得以回复。基于此,一个新颖的Ag+/Hg2+-半胱氨酸-DNA逻辑门得以构筑。  相似文献   

2.
徐静  孔德明 《分析化学》2012,(3):347-353
G-四链体DNA酶是由核酸G-四链体与氯化血红素(Hemin)结合后形成的一种具有过氧化物酶活性的人工酶,利用这种DNA酶,可进行多种化学及生物传感器的设计。为提高G-四链体DNA酶类Hg2+传感器的选择性,本研究在传感器的设计过程中引入了分子内裂分G-四链体,即将形成G-四链体的富G序列拆分成两部分,分别放置在Hg2+探测序列的两端。在无Hg2+存在时,部分富G序列被包埋在某一分子内二倍体结构中,无法形成G-四链体。而在Hg2+存在下,Hg2+对T-T碱基错配的稳定能力可以促使Hg2+探测序列形成分子内二倍体结构,并伴随着原有分子间二倍体结构的破坏及分子内裂分G-四链体的生成。利用生成的裂分G-四链体与Hemin作用后检测体系酶活性的提高,实现Hg2+传感器的设计。利用该传感器,可在50~500 nmol/L及2.0~7.5μmol/L两个浓度范围内实现Hg2+的定量检测,检出限为47 nmol/L。由于裂分G-四链体DNA酶的使用强化了传感器对Hg2+的依赖性,极大地提高了设计的Hg2+传感器的选择性。对实际水样的加标回收结果显示,回收率为97.5%~104.5%,证明此传感器可以满足实际水样中痕量Hg2+的分析要求。  相似文献   

3.
段娜娜  王娜  杨薇  孔德明 《分析化学》2014,42(10):1414-1420
对鸟嘌呤碱基G重复序列之间连接环结构对G-四链体形成的影响进行了研究。发现在连接环较长,DNA链不易形成G-四链体的情况下,可以通过将环序列设计成双链结构的方式促进G-四链体的重新形成。这就为传感器的设计提供了一个新途径,即可以利用目标分子对环部双链的调节作用控制G-四链体DNA酶的活性。为证明这一点,在双链区域引入T-T碱基错配,破坏双链结构使DNA链不能形成G-四链体。Hg2+对T-T错配的稳定作用可以促进双链结构的形成,DNA链重新折叠成G-四链体,得到的G-四链体与氯化血红素(Hemin)结合后形成具有过氧化物酶活性的G-四链体DNA酶,据此构建了Hg2+传感器。利用此传感器可在10~700 nmol/L范围内实现Hg2+的定量检测,检出限为8.7 nmol/L。在此基础上,利用半胱氨酸可以将Hg2+从T-Hg2+-T碱基对上竞争下来的能力,设计了一种半胱氨酸的检测方法。此方法可以在20~600 nmol/L范围内实现半胱氨酸的定量检测,检出限为14 nmol/L。  相似文献   

4.
基于寡核苷酸链的汞离子荧光生物传感器   总被引:1,自引:0,他引:1  
基于G-四链体结构和卟啉类化合物N-甲基卟啉二丙酸IX(NMM)结合产生强烈的荧光,利用T-Hg(Ⅱ)-T错配对汞离子(Hg2+)的特异性识别,建立了一种简单、灵敏、高效的Hg2+检测新方法.在富含鸟嘌呤(G)寡核苷酸链中,引入了大量胸腺嘧啶(T).在没有Hg2+存在时,可以自发形成G-四链体结构,与NMM结合产生强烈的荧光;在Hg2+存在时,可与另一条富含T序列的互补链通过T-Hg(Ⅱ)-T特异性结合,形成双链DNA分子,从而导致G-四链体结构不能产生.优化后最佳实验条件为:缓冲溶液的pH=6.7,20 mmol/LKCl,2.5 μmol/L NMM,反应时间为2h.在优化条件下,体系的荧光强度变化值与Hg2+浓度呈现良好的线性关系,线性范围为50~ 1000 nmol/L,检出限为22.8 nmol/L(30).此生物荧光传感器对Hg2+具有良好的选择性.实际水样中Hg2+的加标回收率为106.1% ~ 107.8%,可以满足实际水样品中Hg2+的检测要求.  相似文献   

5.
G-四链体是由富含鸟嘌呤(G)的核酸通过π-π堆积形成的核酸二级结构。前期研究发现,G-四链体DNA对肿瘤细胞具有普遍识别和结合能力,且具有如抗肿瘤增殖等生物学活性,但G-四链体DNA的结构对其识别和结合肿瘤细胞的能力的影响还未见报道。本文采用圆二色光谱和凝胶电泳对不同连接环(loop)长度G-四链体DNA的结构和稳定性进行了研究,利用流式细胞术和激光共聚焦显微成像技术,研究了G-四链体DNA的连接环(loop)长度在其与肿瘤细胞结合中的作用。结果表明,loop长度越短的G-四链体DNA越易形成平行结构,识别和结合肿瘤细胞的能力越强,也更容易被细胞摄取;loop长度长的G-四链体DNA倾向于形成混合平行结构,这类G-四链体DNA识别和结合肿瘤细胞的能力较弱。  相似文献   

6.
莫艳红  李晖  王彬  徐晓慧  刘思思  曾冬冬 《应用化学》2020,37(11):1249-1261
血红素/G-四链体DNA酶是一类具有类过氧化物酶活性的DNA分子,因其具有出色的活性、易修饰性和可编程性,被广泛应用于生物传感器等领域。 本文先是简要介绍了G-四链体的结构,再主要综述了增强血红素/G-四链体DNA酶活性的策略及基于血红素/G-四链体DNA酶的生物传感器在生物标志物、微生物与生物毒素以及金属离子检测中的应用,并展望了血红素/G-四链体DNA酶的未来发展趋势。  相似文献   

7.
傅昕  顾丹玉  赵圣东  温世彤  张何 《分析化学》2016,(10):1487-1494
以磁纳米颗粒为固定DNA探针的固相载体,发展了一种基于分子间裂分G-四链体-血红素DNA酶的Ag+和半胱氨酸传感器。当磁纳米颗粒表面DNA二聚体中富鸟嘌呤( G)序列与Ag+结合时,Ag+可有效地阻止碱基G之间Hoogsteen氢键的形成,破坏G-四链体结构。而半胱氨酸存在时,巯基与Ag+之间相互作用,将Ag+从碱基G上取代下来,促进G-四链体的重新形成,显示出类过氧化物酶的催化活性,催化2,2'-连氮基-双-(3-乙基苯并二氢噻挫啉-6-磺酸(ABTS)-H2O2反应体系的显色反应。本方法可以直接通过磁分离从样品中将检测探针与复杂体系中的干扰组分分离,有效提高了灵敏度,降低了背景信号,实现了实际样品中Ag+和半胱氨酸的快速、灵敏、特异的比色分析。在最优条件下,Ag+的线性检测范围为0.5~100 nmol/L,检出限为0.2 nmol/L;对半胱氨酸的线性检测范围为0.1~80 nmol/L,检出限为0.04 nmol/L。  相似文献   

8.
本文合成了两种三联吡啶修饰的萘酰亚胺化合物NPI1和NPI2,并利用紫外-可见吸收光谱(UV-Vis)、圆二色光谱(CD)、荧光共振能量转移(FRET)等方法研究了它们与双链CT DNA和Htelo G-四链体DNA的相互作用。实验结果表明,化合物NPI1和NPI2对G-四链体DNA具有很好的结合能力和选择性,溶液中的碱金属离子种类和萘酰亚胺基团上的取代基对NPI1和NPI2与DNA的作用有很大的影响。在含K+的缓冲液中,NPI2与G-四链体的结合常数达到1.06×108 L/mol,是与双链CT DNA结合常数的268倍。圆二色谱结果表明在不含碱金属离子的溶液中,NPI1和NPI2可诱导Htelo DNA形成反平行结构G-四链体。Autodock分子对接模拟表明NPI1和NPI2可以通过堆积作用、静电作用、氢键等作用方式与G-四链体结合,使得它们对G-四链体具有很高亲和性(Ka>107 L/mol)。  相似文献   

9.
利用电喷雾质谱(ESI-MS)研究了4种常见的类黄酮化合物芦丁、 槲皮素、 葛根素和柚皮苷与2种不同形态结构的G-四链体DNA和3种双链DNA的非共价相互作用, 比较了这些小分子化合物与不同形态结构DNA结合的强弱及形成复合物的化学计量. 结果表明, 芦丁和槲皮素对G-四链体DNA具有一定的选择性, 同时它们对双链DNA的选择性也较高; 而葛根素和柚皮苷对G-四链体DNA仅显示了较低的选择性.  相似文献   

10.
富含鸟嘌呤的核酸序列能形成各种G-四链结构,G-四链结构具有重要的生物功能,在许多细胞内的事件如端粒DNA的保护和延长、复制、重组和转录等事件中有重要作用.一些以G-四链结构为靶点的小分子可抑制端粒酶的活性,使G-四链结构成为抗肿瘤药物设计的重要靶点.同时,某些特定序列的G-四链DNA具有抗肿瘤抗病毒等活性,如其中一个G-四链DNA T30923已经进入抗HIV-1 Ⅱ期临床研究.T30923的改进体T40214,即15聚体5′-(GGGC)4-3′,形成了一个对称而紧凑的分子内G-四链(图1),它的loop区因同时结合了两个K+而大大的增加了结构的稳定性[1].这种分子内的G-四链结构是体外抑制HIV整合酶以及抑制被感染细胞中HIV-1病毒的复制所必需的[2].为了增加T40214在体内的化学及酶稳定性,我们将异核苷分别掺入15聚体中[3],通过CD光谱、电泳等方法研究掺入异核苷的G-四链在结构和活性上的变化.  相似文献   

11.
铜转运蛋白(CTR1)不仅参与铜的细胞摄取,而且在其它重金属离子的摄取过程中也发挥重要作用. 本文采用紫外-可见(UV-Vis)光谱,核磁共振(NMR)和质谱(MS)的方法,研究了人源CTR1 (hCTR1)的C端金属结合域(C8)与Ag+和Hg2+的相互作用. 研究表明,Ag+和Hg2+都能与C8结合,但二者与C8的结合机制明显不同. 每个C8分子可以结合两个Ag+离子,但一个Hg2+却可以与两个C8形成桥联. 此外,Ag+离子与C8的配位是一个中等速度的交换过程,而Hg2+离子则为快速交换过程. C8的半胱氨酸残基是两种离子的重要结合位点,同时组氨酸残基也参与两种金属离子的配位,其中Ag+优先结合组氨酸,而Hg2+则对半胱氨酸的结合具有显著的优势. 虽然HCH基序对C8 与金属配位至关重要,一些远端的其它氨基酸也可以参与C8 与银离子的配位,这可能与CTR1 在摄取Ag+过程中的金属转移机制相关. 这些结果为理解hCTR1 蛋白摄取重金属离子的作用机制提供了必要的信息.  相似文献   

12.
合成了一种新的吡咯腙探针1,用于Hg2+的比色和荧光开启检测。探针1对Hg2+的检测限为45 nmol·L-1,缔合常数为5.78×108 L·mol-1。值得注意的是,工作pH范围为4.0~10.0。Job曲线和MS数据证实探针与Hg2+形成1:1的配合物。通过1H NMR、时间分辨荧光光谱和密度泛函理论(DFT)计算系统研究了探针与Hg2+的配位模式。此外,由于吗啉基团的存在,探针可以检测HeLa细胞溶酶体中的Hg2+。  相似文献   

13.
Bishnu Prasad Joshi 《Talanta》2009,78(3):903-1129
A novel fluorescent peptide sensor containing tryptophan (donor) and dansyl fluorophore (acceptor) was synthesized for monitoring heavy and transition metal (HTM) ions on the basis of metal ion binding motif (Cys-X-X-X-Cys). The peptide probe successfully exhibited a turn on and ratiometric response for several heavy metal ions such as Hg2+, Cd2+, Pb2+, Zn2+, and Ag+ in aqueous solution. The enhancements of emission intensity were achieved in the presence of the HTM ions by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The detection limits of the sensor for Cd2+, Pb2+, Zn2+, and Ag+ were lower than the EPA's drinking water maximum contaminant levels (MCL). We described the fluorescent enhancement, binding affinity, and detection limit of the peptide probe for HTM ions.  相似文献   

14.
Honglei Mu 《Tetrahedron letters》2007,48(31):5525-5529
A novel two-channel metal ion sensor has been synthesized from macrocyclic dioxotetraamine and 1,8-naphthalimide derivative. The metal ion-selective signaling behaviors of the sensor were investigated. The sensor presented the selective coloration for Cu2+ and Hg2+ that can be detected by the naked-eye, respectively. Besides, the addition of Cu2+ and Hg2+ quenched the fluorescence of 1 obviously and the detection limit was found to be 3 × 10−7 M for Cu2+ and 7 × 10−7 M for Hg2+. This sensor can be utilized for the visual and spectroscopic detection of Cu2+ or Hg2+ in the presence of the other competing metal ions.  相似文献   

15.
讨论了辛基(苯基)-N,N-二异丁基胺甲酰基甲基氧化膦(CMPO)/1-烷基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐([C_nmim][NTf_2],n=2,8,12)萃取体系分别对硝酸溶液中的铕离子(Eu~(3+))和铀酰根离子(UO_2~(2+))的萃取行为。主要研究了硝酸浓度、接触时间、温度、CMPO浓度对CMPO/[C_nmim][NTf_2]体系萃取性能的影响,并选取CMPO/[C_2mim][NTf_2]体系对模拟高放废液中的镧锕元素进行了萃取分离。结果表明:随着离子液体侧链长度增长,萃取平衡时间逐渐延长;CMPO/[C3+2mim][NTf_2]体系对Eu的萃取是放热反应,萃取率随酸度增加而逐渐降低,对UO_2~(2+)则是吸热反应,萃取率随酸度增加而逐渐升高;通过机理研究,推测出对Eu~(3+)的萃取反应是离子交换,而对UO_2~(2+)的萃取反应则是中性配位;CMPO/[C_2mim][NTf_2]体系能有效的萃取模拟高放废液中的镧系、锕系元素,且在高酸下有一定的镧锕分离效果。  相似文献   

16.
在乙酸酐中用2,9-二甲基-1,10-菲咯啉与水杨醛缩合反应得到2,2’-(1E,1’E)-2,2’-(1,10-菲咯啉-2,9-二基)双(乙烯-2,1-二基)双(2,1-亚苯基)二乙酸酯(探针1);再将其进一步水解得到2,2’-(1E,1’E)-2,2’-(1,10-菲咯啉-2,9-二基)双(乙烯-2,1-二基)二苯酚(探针2)。经1H NMR、13C NMR、IR、MS表征,探针化合物为大共轭结构,发光性能良好。两种探针分别表现出对Cu2+、Ag+不同的荧光猝灭作用,探针2还能识别阴离子F-和AcO-,具有双功能离子检测性能。光谱滴定、等温滴定量热及质谱等测定了配合物组成、作用常数及热力学参数,探针与金属离子的配合为放热反应,作用比为2:1。  相似文献   

17.
在乙酸酐中用2,9-二甲基-1,10-菲咯啉与水杨醛缩合反应得到2,2′-(1E,1′E)-2,2′-(1,10-菲咯啉-2,9-二基)双(乙烯-2,1-二基)双(2,1-亚苯基)二乙酸酯(探针1);再将其进一步水解得到2,2′-(1E,1′E)-2,2′-(1,10-菲咯啉-2,9-二基)双(乙烯-2,1-二基)二苯酚(探针2)。经1H NMR、13C NMR、IR、MS表征,探针化合物为大共轭结构,发光性能良好。两种探针分别表现出对Cu2+、Ag+不同的荧光猝灭作用,探针2还能识别阴离子F-和AcO-,具有双功能离子检测性能。光谱滴定、等温滴定量热及质谱等测定了配合物组成、作用常数及热力学参数,探针与金属离子的配合为放热反应,作用比为2∶1。  相似文献   

18.
合成了2,4-二(2-噻吩乙烯基)-6-(4'-N,N-二甲氨基苯乙烯基)-1,3,5-均三嗪(2)并鉴定了其结构。在乙腈-水混合介质中,化合物2在355和416nm处呈现双吸收峰,加入Cu2+,Hg2+ 和Fe3+ 后,均在520nm附近形成新的吸收峰。化合物2与Cu2+、Hg2+ 和Fe3+ 均形成1:1型配合物,其结合常数分别为1.9×105L·mol-1,6.6×103L·mol-1,2.7×103L·mol-1。对照化合物4与金属离子的光谱响应与化合物2相似,仅吸收峰的位置不同。因此,可认为化合物24中三嗪环中的N和噻吩环中的S与Cu2+、Hg2+ 和Fe3+ 共同配位形成了稳定的金属配合物。  相似文献   

19.
采用优化的高温固相方法制备了稀土离子Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La_7O_6(BO_3)(PO_4)_2∶Eu~(3+)材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D0→7F2特征能级跃迁,Eu~(3+)的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La_7O_6(BO_3)(PO_4)_2∶Tb~(3+)材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb~(3+)的5D4→7F5能级跃迁,Tb~(3+)离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2荧光材料均具有良好的热稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号