首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sr2CeO4∶Eu3+柠檬酸-凝胶法的合成及发光性质研究   总被引:13,自引:0,他引:13  
柠檬酸-凝胶方法促使多离子在分子水平上混合,与固相烧结方法相比,能够降低烧结温度和烧结时间。利用这种方法在1000℃下很短的时间得到单相化合物Sr2CeO4。Sr2CeO4是一种发出很强蓝光的基质发光材料。为寻找新的发光体,我们将稀土离子Eu3+掺杂在其中,从荧光光谱上可以看出存在从基质向稀土离子的能量转移。Sr2CeO4∶Eu3+的发光颜色可调谐,当Eu3+离子浓度较小(< 0.5mol%)时,体系发出很强的白光;当Eu3+离子浓度较大(>10mol%)时,体系发出很强的红光,并且猝灭浓度高。  相似文献   

2.
利用简单的室温液相反应制备了KY2F7及镧系离子掺杂的KY2F7∶Eu3+和KY2F7∶Tb3+的纳米球,并利用XRD,TEM,SEM,XRF和荧光光谱对所制备的材料进行了表征。研究表明Eu3+或Tb3+离子已成功地掺杂在KY2F7纳米球中。掺杂  相似文献   

3.
采用优化的高温固相方法制备了稀土离子Eu3+和Tb3+掺杂的La7O6(BO3)(PO42系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La7O6(BO3)(PO42:Eu3+材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D07F2特征能级跃迁,Eu3+的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La7O6(BO3)(PO42:Tb3+材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb3+5D47F5能级跃迁,Tb3+离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu3+和Tb3+掺杂的La7O6(BO3)(PO42荧光材料均具有良好的热稳定性。  相似文献   

4.
刘茹  王喜贵 《无机化学学报》2019,35(9):1659-1664
采用溶胶凝胶-高温固相法制备CePO4-6LaPO4@4SiO2∶Eu3+荧光粉,通过XRD、TEM、EDS、IR以及激发光谱和发射光谱对荧光粉的结构和发光性能进行了表征。XRD和EDS结果证明了目标产物,其由晶态的LaPO4、CePO4和非晶态的SiO2构成;TEM图显示样品形貌为不规则形状,并且显示CePO4-6LaPO4@4SiO2∶Eu3+荧光粉形成核壳结构;HRTEM图可以清楚地看出晶格条纹的形成;IR谱图显示结果与XRD和EDS的分析结果一致;荧光光谱图显示:在466 nm激发下,CePO4-6LaPO4@4SiO2∶Eu3+荧光粉在615 nm处出现属于Eu3+5D07F2跃迁的强烈红光发射。  相似文献   

5.
Eu3+离子掺杂的LaPO4纳米线或纳米棒通过一种简单的水热反应方法被成功地合成出来.水热反应条件以及生成产物的烧结条件对LaPO4基质材料的形貌和结构的影响,通过扫描电子显微镜和X射线衍射等表征手段进行了研究.生成物的物相和形貌可以通过改变反应条件得到很好的控制.LaAlO3也是一种很重要的无机材料,其粉末状态有较高活性和选择性,因而作为催化剂被广泛研究.其体相材料因具有钙钛矿结构,与Y-Ba-Cu-O和Bi-Sr-Ca-Cu-O等超导体系有很好的点阵匹配和热扩散匹配.稀土离子掺杂的镧系化合物的光致发光性不仅与基质材料的组成结构有关,而且与晶体的形貌和尺寸也有关,所以Eu3+离子分别被掺入到单斜晶系独居石结构的LaPO4和钙钛矿结构的LaAlO3中以作对比实验.为了了解反应物周围环境对产物性质的影响,LaPO4:Eu3+和LaAlO3:Eu3+的纳米颗粒同时用共沉淀法制得.不同形貌的LaPO4:Eu3+纳米体系的发光强度略有不同.掺杂的单斜晶系独居石结构的LaPO4和钙钛矿结构的LaAlO3纳米颗粒发光最强时,Eu3+离子的最佳掺杂摩尔百分比分别为5.0%和3.5%.在适当的紫外光照射下,LaAlO3:Eu3+(3.5mol%)比LaPO4:Eu3+(5.0mol%)发射更亮的红光,这是由于两者有不同的自旋轨道耦合和共价键,这表明在纳米尺度下,LaAlO3也是一种很好的稀土离子掺杂的基质材料.  相似文献   

6.
以α-Si3N4,SrCO3,Eu2O3为原料,采用碳热还原氮化法制备了Sr2Si5N8∶Eu2+荧光粉。研究了材料的结构与光谱特性,分析了影响材料发光性能的工艺因素。结果表明,石墨粉含量和助熔剂的用量对Sr2Si5N8相的形成和发光性能有重要影响。当nC/nSr=1.5,助熔剂用量为4wt%时,合成样品的主晶相为正交晶系Sr2Si5N8,在400~550 nm可见光激发下,可发射峰值波长位于609 nm荧光。激发带的位置与Eu2+离子浓度无关,为400~550 nm之间的宽带激发;但发射强度随Eu2+离子浓度的增加而增加,Eu2+离子浓度达到5mol%时发射强度达最大值,在Eu2+离子浓度为2mol%~5mol%之间,观察到发射峰的红移现象。  相似文献   

7.
三层结构的Aurivillius相的Bi4-xEuxTi3-yMyO12x=0~0.6;M=Fe/Co/Ni,y=0.01,0.02,0.04,0.06,0.08,0.10)纳米颗粒,是通过共沉淀法和后续的高温煅烧处理所制备的。利用XRD,SEM,PL,Raman,PPMS等方法对样品进行表征,研究了不同掺杂浓度下的产物的物相、形貌和性能等。实验结果表明,通过掺杂,发现纳米颗粒的粒径变小,形貌更均一,分散性也更好。通过对掺杂离子浓度的优化,发现Eu3+离子的掺杂浓度为x=0.4时,发光强度是最强的。此外,对Ti位进行了磁性离子(Fe3+,Co3+和Ni2+)的掺杂,实验结果发现随着掺杂的磁性离子浓度的减少,发光强度是逐渐增强,而且产物具有很好的铁磁性。  相似文献   

8.
通过溶胶-凝胶方法制备了稀土离子Eu3+和Ga3+共掺杂的SiO2材料;利用IR、XRD等研究了材料的结构,结果表明材料属于非晶态,800 ℃退火后样品的主要结构仍为SiO2的网状结构。400 ℃退火的样品在393 nm激发下发射光谱显示了Eu3+的特征发射光谱,产生3条明显谱带,分别是576 nm(5D0-7F  相似文献   

9.
采用共沉淀法及1 200 ℃后续煅烧4 h,成功制备了CaSb2O6:Bi3+,Eu3+荧光粉,并对其结构及发光性能进行了研究。所制备荧光粉颗粒为六边形类圆饼状,平均尺寸在100~600 nm之间。对CaSb2O6:Bi3+,Eu3+发光的机理分析表明,Bi3+对Eu3+的发光存在高效的敏化与能量传递。当Bi3+和Eu3+的掺杂浓度分别为0.5%和8%,Eu3+位于580 nm(5D07F0 )处的荧光发射显著增强,Bi3+,Eu3+共掺样品的荧光强度是CaSb2O6:Eu3+的10倍左右。调节Bi3+/Eu3+离子掺杂比,色坐标呈现了从蓝、白光到红光的变化,表明该荧光粉可分别作为蓝或红色荧光粉使用,甚至可实现从蓝、白光到红光的自由调控,这为白光LED荧光粉的发展提供了参考。  相似文献   

10.
采用高温固相法合成了绿色荧光粉Ca3Y2Si3O12:Tb3+.XRD检测结果显示,荧光粉主晶相为Ca3Y2Si3O12,属单斜晶系.荧光光谱分析表明:Ca3Y2Si3O12:Tb3+硅酸盐荧光粉可以被370 nm的近紫外光激发,发射绿光,主发射峰位于490 nm(5D47F6),544 nm(5D47F5),585 nm(5D47F4)和621 nm(5D47F3).用544 nm最强峰监测,得到主激发峰位于370 nm的激发光谱,此光谱覆盖了300~450 nm的波长范围.研究了煅烧条件、掺杂浓度及Ce3+共掺杂对荧光粉发光性能的影响:在1 400 ℃下经二次煅烧 6 h得到的样品的发光性能最佳,Tb3+离子的最佳掺杂浓度为20mol%,Ce3+离子共掺杂能够提高荧光粉的发光强度,其最佳掺杂量为4mol%,说明存在Ce3+→Tb3+的能量传递.  相似文献   

11.
采用水热-均匀共沉淀法制备了纳米SrAl2O4∶Eu2+,Dy3+长余辉发光材料。通过XRD、TEM、荧光光谱、热释光谱对其结构和性能进行分析。XRD结果表明所制备的SrAl2O4∶Eu2+,Dy3+纳米发光材料为单相,属单斜晶系。TEM测试表明纳米SrAl2O4∶Eu2+,Dy3+发光材料为规则的球状粒子,粒径为50~80 nm,且分散性良好。激发和发射光谱测试表明,样品的激发光谱是峰值在356 nm的连续宽带谱,发射光谱是峰值位于512 nm的宽带谱,与SrAl2O4∶Eu2+,Dy3+粗晶材料相比,激发和发射光谱都出现了“蓝移”现象。样品的热释光峰值位于358 K,适合于产生长余辉。  相似文献   

12.
采用新型水热-微波法合成了纳米晶长余辉发光材料Y2O2S∶Eu3+,Mg,Ti。通过XRD、TEM、荧光光谱对其进行表征。X射线衍射测试表明所制备的Y2O2S∶Eu3+,Mg,Ti纳米发光材料为单相,六方晶。透射电子显微镜(TEM)测试表明所制备的Y2O2S∶Eu3+,Mg,Ti纳米发光材料粒径小,分布集中。激发和发射光谱测试表明Eu3+离子能有效地掺入硫氧化钇基质中,并具有良好的发光性能。余辉光谱测试表明其余辉颜色为红色,具有良好的余辉效果。  相似文献   

13.
采用静电纺丝技术制备了PVP/[Y(NO3)3+Eu(NO3)3]复合纳米带,将其进行热处理,获得了Y2O3∶Eu3+纳米带。采用XRD、FTIR、SEM、TEM、荧光光谱等技术对焙烧后的样品进行了表征。结果表明:600 ℃焙烧即可获得Y2O3∶Eu3+纳米带,800 ℃时结晶更为良好,产物属于立方晶系。纳米带表面光滑,由平均直径为30 nm的小颗粒紧密排列而成,为多晶结构。随着温度升高,纳米带宽度减小。焙烧800 ℃获得的Y2O3∶Eu3+纳米带的发光性质优于焙烧600 ℃的Y2O3∶Eu3+纳米带。与体材料相比,该纳米带的激发光谱Eu3+-O2-电荷迁移态(CTB)发生红移,发射光谱发生蓝移。  相似文献   

14.
采用微波固相法制备了CaWO4xEu3+,ySm3+,zLi+红色荧光粉。测量样品的XRD图、激发谱、发射谱及发光衰减曲线,研究并分析了Eu3+、Sm3+、Li+的掺杂浓度,对样品微结构、光致发光特性、能量传递及能级寿命的影响。结果表明,Eu3+、Sm3+、Li+掺杂并未引起合成粉体改变晶相,仍为CaWO4单一四方晶系结构。Eu3+、Sm3+共掺样品中,Sm3+掺杂为3%时,Sm3+对Eu3+的能量传递最有效。Li+掺杂起到了助熔剂和敏化剂的作用,使样品发光更强。在394 nm激发下,与CaWO4:3%Eu3+样品比较,3%Eu3+、3%Sm3+共掺CaWO4及3%Eu3+、3%Sm3+、1%Li+共掺CaWO4样品的发光分别增强2倍及2.4倍。同一激发波长下,单掺Eu3+样品寿命最短,Sm3+、Eu3+共掺样品随Sm3+浓度增加,寿命先减小后增加,且掺杂了Li+的样品比不掺Li+的样品5D0能级寿命有所增加。  相似文献   

15.
采用同轴静电纺丝技术, 以氧化钇、氧化铕、正硅酸乙酯(C8H20O4Si)、无水乙醇、PVP和DMF为原料, 成功制备出大量的Y2O3:Eu3+@SiO2豆角状纳米电缆. 用TG-DTA, XRD, SEM, TEM和荧光光谱等分析技术对样品进行了系统地表征. 结果表明, 得到的产物为Y2O3:Eu3+@SiO2豆角状纳米电缆, 以无定型SiO2为壳层, 晶态Y2O3:Eu3+球为芯, 电缆直径约为200 nm, 内部球平均直径约150 nm, 壳层厚度约为25 nm, 电缆长度>300 μm. 纳米电缆内部为球状结构, 沿着纤维长度方向有序排列, 形貌均一. Y2O3:Eu3+@SiO2豆角状纳米电缆在246 nm紫外光激发下, 发射出Eu3+离子特征的波长为614 nm的明亮红光. 对其形成机理进行了初步讨论.  相似文献   

16.
以EDTA为矿化剂,采用水热法制备了GdVO4:Dy3+、GdVO4:Dy3+,Eu3+和GdVO4:Dy3+,Eu3+,Tm3+荧光粉,研究了所制备样品的相结构、形貌、荧光性质、Dy3+到Eu3+的能量传递及Dy3+4F9/26H15/2跃迁的衰减曲线。X射线衍射(XRD)确定了所合成的GdVO4:0.03Dy3+、GdVO4:0.03Dy3+,0.07Eu3+和GdVO4:0.03Dy3+,0.07Eu3+,0.07Tm3+样品均为四方晶系;扫描电镜(SEM)显示GdVO4:0.03Dy3+,0.07Eu3+和GdVO4:0.03Dy3+,0.07Eu3+,0.07Tm3+均为棒状结构,平均长度分别约为0.458和0.491 μm;通过研究GdVO4:Dy3+,Eu3+的发射光谱和衰减曲线,佐证了Dy3+到Eu3+的能量传递过程,并确定了其能量传递的机制为偶极-偶极相互作用。通过调节GdVO4:0.03Dy3+,xEu3+荧光粉中Eu3+的掺杂浓度实现了准白光输出(0.424,0.350);调节GdVO4:0.03Dy3+,0.07Eu3+,yTm3+荧光粉中Tm3+的掺杂浓度,也实现了白光输出(0.346,0.301)。  相似文献   

17.
用水热法合成了NaYW2O8:Ln3+(Ln=Yb/Er and Eu)微米晶,并研究了pH值对微米晶组成、形貌和荧光性质的影响。通过调节微米晶的形貌和结构对微米晶的上转换荧光进行了调控。在NaYW2O8:Eu3+微米晶的激发光谱中,Eu3+-O2电荷迁移带和W6+-O2-跃迁与Eu3+离子的f-f激发峰的比值随着微米晶的形貌和结构的不同发生改变。  相似文献   

18.
采用液相法成功制备了MWCNTs负载NaGdF4:Tb3+,Eu3+纳米粒子的磁光热多功能复合纳米材料,并用XRD,SEM和EDS对其结构、组成和形貌进行了表征,结果表明:NaGdF4:Tb3+,Eu3+纳米粒子为六方晶相,形貌为球形且尺寸分布均匀,直径大约为25 nm,并且均匀的包覆在MWCNTs的表面;通过PL,VSM和HTC对复合纳米材料的发光性能,磁性能和光热转换性能进行了表征,采用MTT法对多功能复合纳米材料的生物相容性进行了评估,结果表明:MWCNTs-NaGdF4:Tb3+,Eu3+复合纳米材料具有良好的多色发光性能、磁性能、光热转换性能、低的毒性和良好的生物相容性。该种磁光热多功能复合纳米材料在生物标记、生物成像、肿瘤诊疗等领域有着广泛的应用前景。  相似文献   

19.
Ca5(PO4)3Cl中铕和铽间的电子转移   总被引:2,自引:0,他引:2  
本文通过对铕和铽在Ca5(PO4)3Cl基质中的发光特征的研究,发现铕和铽之间存在着电子转移现象,并对其反应机理进行了探讨。Eu3+(4f6)和Tb3+(4f8)通过电子转移使它们达到电子结构稳定的Eu2+(4f7)和Tb4+(4f<  相似文献   

20.
共沉淀-熔盐法制备BaMoO4∶Eu3+及其发光性能研究   总被引:1,自引:0,他引:1  
以KCl-NaCl为熔盐,采用共沉淀前躯体-熔盐辅助焙烧法合成了红色发光材料BaMoO4∶Eu3+。运用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)及荧光光谱(PL)等测试手段,研究了熔盐辅助焙烧温度对粉体相结构、形貌和发光性能的影响,并对比了直接采用共沉淀法合成BaMoO4∶Eu3+的结构与发光性能。结果表明:采用两种方法制备的BaMoO4∶Eu3+均是纯相,粒径随温度升高而增大。当KCl-NaCl复合熔盐焙烧温度大于700 ℃,BaMoO4晶粒在熔盐中实现了(111)面取向生长,得到均一的尖晶石型BaMoO4∶Eu3+微晶。光谱研究表明:共沉淀前躯体-熔盐辅助焙烧法合成样品在615 nm处的Eu3+5D0-7F2发射明显得到加强,样品发出明亮的红色发射光。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号