首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
光谱法研究尿素对水溶液中血红蛋白构象的影响   总被引:1,自引:0,他引:1  
应用荧光猝灭法和动态光散射法测定尿素-水混合溶剂中血红蛋白(Hb)与联苯胺的结合距离和Hb的流体动力学半径. 结合Hb的荧光光谱和吸收光谱, 探讨尿素与蛋白质分子在水溶液中相互作用的机理及其对蛋白质构象的影响. 结果显示, 尿素分子取代水分子在蛋白质周围形成溶剂化层, 并与骨架肽链和亲水侧链形成氢键, 从而积聚在蛋白质分子表面. 尿素分子与蛋白质分子之间的直接相互作用对蛋白质的构象具有复杂的影响, 高浓度的尿素-水混合溶剂破坏蛋白质的构象, 而低浓度的混合溶剂则有利于蛋白质形成更紧密的构象. 在高浓度的尿素-水混合溶剂中, Hb血红素疏水空穴失去原有的三级结构后形成一个与熔球态相类似的结构.  相似文献   

2.
本文报道1.5分辨率去五肽(B 26—30)胰岛素晶体中的水结构。根据扩充F_0的最后的(2F_o—F_c)Fourier图的检验,所讨论的水模型包括81个水分子(电子密度>0.4 e/~3),约占晶体溶剂的三分之二。以2.4—3.2为氢键范围,51个水分子同蛋白质原子成氢键,占水的63%,其中有12个以单水桥接相邻蛋白质分子,更多的以双水桥接相邻蛋白质分子。在蛋白质分子间的一长狭缝中有一个紧凑的水网,两头两个Cd原子通过三个水分子(配位体)像木桩一样支撑着这个水网,表明Cd原子和水网在分子密堆积中的重要作用。  相似文献   

3.
  林a  王旭b  许莉c  何维仁a  魏志强a  林瑞森c 《中国化学》2008,26(10):1793-1798
应用动态光散射法测定了叔丁醇(TBA)-水混合溶剂中牛血清白蛋白(BSA)流体动力学半径, 并通过分析BSA的荧光光谱和紫外-可见光吸收光谱, 研究BSA在TBA-水混合溶剂中的构象变化. 同时, 通过分析TBA-水二元体系和BSA-TBA-水三元体系静态散射光的变化, 探讨TBA-水溶剂体系的混合状态及其对BSA在水溶液中构象变化的影响. 结果表明, TBA-水溶剂体系的混合状态与BSA的构象变化密切相关, 低浓度的混合溶剂中, 水分子在TBA周围形成疏水水化结构, 与蛋白质疏水基团的选择性结合, 破坏了蛋白质的稳定结构, 但是, 少量TBA的加入削弱了蛋白质疏水基团间的疏水相互作用, 有利于蛋白质形成更紧密的构象; 高浓度的混合溶剂中, TBA分子相互聚集形成胶束, 削弱了对蛋白质的变性作用.  相似文献   

4.
虽然海藻糖已经广泛用于蛋白质稳定性研究,但海藻糖稳定蛋白质的作用机理尚不清晰. 本文利用全原子分子动力学模拟研究了20种常见氨基酸和海藻糖之间的分子机理. 结果表明,所有氨基酸,尤其是极性和带电氨基酸,均优先与水分子结合. 相反,仅有疏水性氨基酸与海藻糖发生相互作用,尤其是芳香族和疏水性氨基酸的侧链更易于和海藻糖接触. 所有氨基酸的主链与水分子接触的趋势一致. 虽然氨基酸和海藻糖与水之间均形成氢键,但氨基酸和海藻糖之间的氢键相互作用要弱于氨基酸和水之间的氢键相互作用. 上述分子模拟的结果对于海藻糖稳定蛋白质作用机理的解析及高效蛋白质稳定剂的理性设计具有非常重要的理论指导意义.  相似文献   

5.
采用拉曼光谱研究了水-乙腈-二甲基亚砜三元水溶液体系中氢键作用对分子结构的影响.结果表明,在三元水溶液中乙腈C≡N键的电子云向碳原子发生偏移,二甲基亚砜中S=O双键的电子云向硫原子发生偏移;在三元体系中乙腈和二甲基亚砜与水形成氢键时存在明显的竞争关系,出现乙腈分子和二甲基亚砜分子共用1个水分子形成复合物的情况,并且随着水含量的增加,共用水分子的情况逐渐消失.  相似文献   

6.
海藻糖和氨基酸之间相互作用的分子动力学模拟   总被引:1,自引:0,他引:1  
虽然海藻糖已经广泛用于蛋白质稳定性研究,但海藻糖稳定蛋白质的作用机理尚不清晰.本文利用全原子分子动力学模拟研究了20种常见氨基酸和海藻糖之间的分子机理.结果表明,所有氨基酸,尤其是极性和带电氨基酸,均优先与水分子结合.相反,仅有疏水性氨基酸与海藻糖发生相互作用,尤其是芳香族和疏水性氨基酸的侧链更易于和海藻糖接触.所有氨基酸的主链与水分子接触的趋势一致.虽然氨基酸和海藻糖与水之间均形成氢键,但氨基酸和海藻糖之间的氢键相互作用要弱于氨基酸和水之间的氢键相互作用.上述分子模拟的结果对于海藻糖稳定蛋白质作用机理的解析及高效蛋白质稳定剂的理性设计具有非常重要的理论指导意义.  相似文献   

7.
利用差示扫描量热法,研究了无水及含水的1,2-双正十七烷酰基磷脂酞胆碱(DHPC)的相变特性.实验发现,无水DHPC初次受热时,首先发生玻璃态转变,接着像通常的晶体一样熔化.因此是玻璃性晶体.从熔体中结晶的DHPC是通常的晶体.从可以冻结水的总熔化培Q_f和水含量h的关系断定:在含水DHPC中,水可以存在于3种热力学上可区分的状态.第1种是不可冻结水,它是与磷脂头基直接结合的水,是一级水合水.每个头基最多可结合7个这样的水分子.第2种是二级水合水,其熔点接近于纯水但其比熔比焓dQ_f/dh比纯水的低.每个DHPC分子最多可保有约6个这样的水分子.当h再增大时,体系中有熔点及比熔化焓接近于纯水的体相水.实验发现,h增加,DHPC熔化峰向低温方向移动;当h>16.2%时,其凝胶-液晶相变温度T_tr及相交焓面△H_tr基本上不随h变化.T_tr、△H_tr及相变熵△S_(tr)的实验值和从偶数碳酰基磷脂酰胆碱同系物中得到的Huang(1981)方程组的计算值吻合.  相似文献   

8.
本文对由五十六个水分子包围一个中性的丙氨酸分子所构成的分子集团做了MC模拟计算。求出了水—水和氨基酸—水的平均相互作用能。将丙氨酸分子周围的空间划分为三个区域——羧基区、氨基区和甲基区。分别以羧基碳、氨基氮和甲基碳作为中心原子,统计了各区中水—水和水—氨基酸相互作用能随着水分子中的氧原子和该区中心原子的距离而改变的函数,各区中水分子偶极矩的取向关联函数以及水分子中氧原子和氢原子的径向分布函数。此外,还计算了各区第一个水化层的水分子数和整个丙氨酸分子第一个水化层的水分子数。  相似文献   

9.
杨科成  崔凤超  李云琦 《应用化学》2018,35(10):1243-1248
利用分子动力学模拟研究了在不同尿素浓度下,核糖核酸酶Sa(RNase Sa)表面水和尿素分子的分布和动力学行为。 结果表明,尿素分子可与RNase Sa酶形成较强的相互作用,并取代其表面的水分子而富集在蛋白质表面。 尿素分子更倾向与RNase Sa酶的疏水残基作用,与RNase Sa酶主链形成氢键的能力更强。 尿素分子的平动和转动远远慢于水分子的平动和转动。 RNase Sa酶表面水分子的平动和转动随着尿素浓度增加而逐渐变慢,但RNase Sa酶表面尿素分子的动力学并不依赖于尿素浓度变化。 本研究中明晰的RNase Sa酶表面水和尿素分子分布和动力学有助于理解水和尿素分子对蛋白质稳定性的影响。  相似文献   

10.
结合Monte Carlo模拟技术, 提出了一种反胶团溶液的快速数学建模新方法. 利用量子-经典动力学模拟方法, 考察了I2分子受限于两个不同尺寸的反胶团水池中振动频率的诱导位移及谱分布. 结果表明, 相比于体相水, 受限于反胶团水池中I2分子的诱导位移表现为蓝移, 且蓝移大小随水池尺寸变化不大. 通过对I2分子与周围环境相互作用的分解分析, 得到了水池水、表面活性剂以及有机溶剂分子对I2分子振动频率诱导位移的瞬态贡献, 揭示了I2分子振动弛豫的微观作用机制. 此外, 对于受限水池中水分子的诱导贡献及空间分布的研究表明, I2分子振动频率位移的诱导贡献主要来自于第一溶剂层, 它是由4个水分子蓝移贡献和2个水分子红移贡献组成.  相似文献   

11.
脂肪族氨基酸二肽与水团簇的理论研究   总被引:1,自引:0,他引:1  
用ABEEMσπ/MM模型和MP2/6-31+G(d)//B3LYP/6-31G(d)方法研究水合效应对脂肪族氨基酸二肽的影响.从结构和能量两方面说明Leu残基在蛋白质中起成旋作用,Val和Ⅱe残基在蛋白质中起解旋作用.同时得出:水分子严重影响了二肽分子的骨架二面角;对于结合相同数目水分子的团簇倾向于形成含有环状氢键的结构,并且含有环状氢键团簇的结合能大于含有链状氢键团簇的结合能.  相似文献   

12.
纳米笔刻蚀技术构建小牛胸腺组蛋白纳米结构   总被引:1,自引:1,他引:0  
采用纳米笔刻蚀(DPN)技术控制针尖的运行,成功地将小牛胸腺组蛋白传递到新剥离的云母表面,获得了不同尺寸、形状的小牛胸腺组蛋白纳米结构,同时考察了针尖移动速率、针尖-基底接触时间对DPN技术的影响.结果表明,较快的针尖移动速率和较短的针尖-基底接触时间沉积较少的墨水分子,同时形成的纳米图案和墨水分子的本身性质也有关系.这种方法可以用于构建其他蛋白质分子,为生物纳米器件的合成提供更多机会,同时组蛋白纳米结构的构建也可以作为模板沉积其他分子,在蛋白质监测、生物传感器方面有着潜在的应用.  相似文献   

13.
甲烷水合物分子间势能的量子化学研究   总被引:1,自引:0,他引:1  
用Hartree-Fock SCF和密度泛函(BLYP,B3LYP,MPW1PW91)方法对以结构-Ⅰ为单元的甲烷水合物进行了分子间势能的理论研究.该结构单元为正十二面体,其中包括20个水分子,甲烷分子在其中心.采用从头算HF/6-31G(d,p)对甲烷分子进行几何优化,采用ST2模型对水分子作几何优化.水-水间氢键势能Ehb(l)和水-甲烷间范德华势能Evdw(l)作为边长l的函数进行计算,计算时固定水和甲烷分子的几何形状.所有计算中均使用6-31G(d,p)基组.基组重叠误差(BSSE)经校正其上限和下限为水-水氢键能加以确定.由B3LYP经基组重叠误差(BSSE)校正得到的O—O距离为RO—O=0.280 nm,C—O距离RC—O=0.392 nm,比其他方法更接近实验值的0.282和0.395 nm.结果表明,在天然气水合物结构-Ⅰ中水-水分子对的氢键能(30~36 kJ/mol)大于水的二聚体(H2O)2氢键能(-22.6±2.9)kJ/mol,亦大于六角形冰的(-21.7±0.5)kJ/mol,十二面体结构为一稳定单元.以上分子间相互作用势能的结果为得出Lennard-Jones和Kihara势能参数提供了坚实的基础,此参数对分子动力学模拟天然气水合物是非常有用的.  相似文献   

14.
制备了高度水合状态的纤维素凝胶, 研究了水在凝胶中的存在状态及其对纤维素结晶的影响. 结果表明, 水在纤维素水凝胶中存在非冻结水、 可冻结水和自由水3种状态. 非冻结水饱和含量为一般纤维素吸附水中不可冻结水的5倍以上, 高达1.6 g/g. 纤维素在水合状态下结晶受到抑制, 随着水含量的减小, 结晶会趋于完善. 在环境温度下, 当纤维素中只存在非冻结水时, 其与纤维素分子链间氢键作用力不稳定, 对纤维素结晶抑制作用较弱, 纤维素结晶比较完善, 导致纤维素断裂时表现为脆性断裂. 水介质的引入有望为纤维素的利用开发提供一种新的思路.  相似文献   

15.
水分子通道蛋白的结构与功能   总被引:10,自引:0,他引:10  
隋海心  任罡 《化学进展》2004,16(2):145-152
水分子穿越双磷脂生物膜的输运机理是生理学和细胞生物学中一个长期未能解决的重要问题.AQP1水通道蛋白的发现和鉴定使得人们确认出一个新的蛋白质家族--水通道蛋白家族.正是这一蛋白家族的存在,使得水分子可以进行快速的跨膜传输.由晶体学方法解出的哺乳动物AQP1水通道蛋白的原子结构,最终揭示了水通道蛋白只允许水分子快速传输而阻挡其他的小分子和离子(包括质子H+)的筛选输运机理.本文概述了水通道蛋白的发现和其对水分子的筛选传输机理.  相似文献   

16.
超声反应条件下,以氧化银、2,2’-二苯基二羧酸(H2bpda)及柔性配体1,3.-(4-吡啶)丙烷(bpp)为原料,在1:1的甲醇-水混合溶剂中合成了一个全新的银配合物IAg4(bpda)2-(bpp)4·14H2O·2CH3OH]n(1),并对该配合物进行了元素分析、红外光谱分析、热重分析以及晶体结构研究.X射线单晶结构分析表明,配合物1的空洞中包裹着一种由罕见的圣杯式十六核水簇、四个悬挂水分子及四个悬挂甲醇分子通过氢键作用所构筑的具有中心对称性的水-甲醇二元簇合物(H2O)20(CH3OH)4.其中的十六核水分子簇可看作由一组对称性相关的八核水簇相互耦合而成,而每个八核水则由两个折叠状的五核水通过共边形成.有趣地是,仔细分析发现目前的十六核水簇结构上非常类似由两个并环戊二烯通过[2+2]环加成而得到的一种复杂的有机烃,显示出水分子簇与有机分子结构上的相似性.  相似文献   

17.
马林  刘东群  刘春丽  许莉  林瑞森  童张法 《化学学报》2008,66(13):1546-1552
应用荧光猝灭法和动态光散射技术测定牛血清白蛋白(BSA)与荧光素在正丙醇-水和异丙醇-水混合溶剂中的相互作用距离和BSA的流体动力学半径, 研究正丙醇和异丙醇对水溶液中蛋白质构象的影响. 结果显示, 正丙醇-水和异丙醇-水混合溶剂中BSA与荧光素的相互作用距离和BSA的流体动力学半径随着正丙醇和异丙醇浓度的增加而先减小后增大, 表明低浓度的正丙醇和异丙醇有利于蛋白质形成紧密的构象, 而较高浓度的正丙醇和异丙醇则破坏蛋白质的紧密构象. 试验中观察到BSA与荧光素在正丙醇-水混合溶剂中的结合距离大于同浓度的异丙醇-水混合溶剂中的结合距离, 而BSA在前者的流体动力学半径小于后者, 说明无支链的正丙醇分子易于与蛋白质的疏水基团产生较强的疏水相互作用, 而带支链的异丙醇分子的疏水性较弱, 有利于与蛋白质分子的亲水基团相互作用而积聚在蛋白质表面.  相似文献   

18.
用密度泛函B3LYP/6-311++G**理论,气相和水相中(PCM溶剂模型应用于水相计算),对所研究物种进行全自由度优化,通过研究没食子酸与水或苯分子间的氢键作用,探讨树脂对没食子酸及苯吸附的影响.计算结果显示,没食子酸的羟基不仅与水分子能形成双聚氢键,显示极强的亲水性;且与苯分子亦可形成双氢键,其作用力强于苯分子与水分子间的作用力,没食子酸的存在显著影响树脂吸附苯.同时,溶剂化效应对树脂吸附没食子酸和苯具有一定的影响.  相似文献   

19.
采用基于反应力场(ReaxFF)的分子动力学模拟方法,研究了摩擦界面水分子向超高分子量聚乙烯(UHMWPE)基体扩散和渗透的基本过程.分子模拟结果表明:摩擦过程中,水分子稳定吸附在Fe板表面,并与聚乙烯链形成分子内摩擦,使聚乙烯分子产生剪切变形.当Fe板表面存在纳尺度外凸结构时,其在UHMWPE表面的耕犁作用更为显著,使摩擦界面的内摩擦力显著增加.当摩擦速度增加时,摩擦界面原子温度显著升高.在水润滑条件下,界面水分子逐渐扩散到UHMWPE基体中,引起相邻聚乙烯链之间的原子距离增加,这导致聚乙烯链之间的相互作用强度降低.此外,摩擦界面处还伴随着水分子中氢氧键断裂,并引起相应原子的电荷跃变.此时,水氧原子与Fe原子形成Fe―O化合物,且具有与Fe2O3相似的晶体结构.水分子扩散进入UHMWPE内时,还引起其周围聚乙烯分子的电荷发生改变,造成UHMWPE表层原子电荷分布不均匀.  相似文献   

20.
采用分子动力学模拟方法比较了溶菌酶蛋白在两种典型聚合物防污材料聚乙二醇(PEG)和聚二甲基硅氧烷(PDMS)表面的吸附行为,在微观上探讨了聚合物膜表面性质对蛋白质吸附的影响.根据蛋白质与聚合物膜之间的相互作用、能量变化及表面水化层分子的动力学行为,解释了PEG防污涂层相对于PDMS表面具有更佳防污效果的原因:(1)相比PDMS涂层,蛋白质与PEG涂层的结合能量较低,使其结合更加疏松;(2)蛋白质吸附到材料表面要克服表面水化层分子引起的能障,PEG表面与水分子之间结合紧密,结合水难于脱附,造成蛋白质在其表面的吸附需要克服更高的能量,不利于蛋白质的吸附.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号