首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
苯丙共聚微乳液粒径增长机理研究   总被引:1,自引:0,他引:1  
自从1980年Stofer[1]首次进行微乳液聚合研究以来,微乳液聚合法作为制备纳米聚合物乳液的主要方法,已广泛应用于生物医药、涂料、胶黏剂和造纸工业等领域.随着微乳液的广泛应用,要求人们对微乳液聚合深入研究,然而大多数的报道都是关于微乳液聚合速率的研究,对微乳液聚合的过程和粒子分散变化的研究报道很少.虽然乳液聚合和微乳液聚合具有许多相似点,但是由于微乳液聚合过程中需要加入大量的乳化剂,导致微乳液聚合的反应动力学不同于乳液聚合.  相似文献   

2.
水性涂料用聚丙烯酸酯微乳液的合成及其表征   总被引:4,自引:0,他引:4  
低污染、低能耗的乳液涂料在建筑涂料中得到了广泛应用,具有核壳结构的聚合物乳液对胶膜的力学性能有较大的改善[1],微米(或纳米)级乳液具有优异的成膜性能,两者均是近年来高分子材料科学中发展十分迅速的新领域[2]。但微乳液聚合时乳化剂用量大,单体含量少。本文采用阴非离子复合乳化剂体系,单体预乳化工艺,种子乳液聚合法,通过正交实验优化聚合工艺参数及体系配方,合成了纳米级聚丙烯酸酯微乳液。并对乳液聚合物的粒径及分布、热性能、分子量及分布、结构等进行了表征。1 实验部分1 1 主要原料及乳液表征苯乙烯(St)、甲基丙烯酸甲…  相似文献   

3.
在聚合物微球表面引入不同的基团 (如亲水性的羟基或羧基 ) ,可以改善聚合物微球的稳定性甚至生物相容性[1~ 4] ;利用表面基团可以把无机半导体微粒和功能有机分子以及生物分子引入聚合物微球[5~ 8] ,赋予聚合物微球特殊的性能 ,使其广泛应用于涂料、光电功能材料和生物医用材料等领域[9~ 15] .其中 ,表面带有阳离子的聚合物微球在絮凝剂、胶粘剂、水性涂料等方面已经得到广泛研究[16~ 2 0 ] .通常阳离子聚合物微球可以根据不同的需要利用常规乳液聚合、核壳乳液聚合等方法来合成 .亲水性和疏水性单体进行的无皂乳液聚合[2 1] ,因其能在…  相似文献   

4.
王超  王琪  邱桂花 《高分子学报》2006,(9):1038-1044
通过超声辐照原位乳液聚合制备了稳定的丙烯酸丁酯-甲基丙烯酸甲酯-丙烯酸共聚物[P(BA-MMA-AA)/TiO2]纳米复合乳液.系统研究了乳化剂浓度,单体及TiO2用量对超声辐照原位乳液聚合反应的影响.结果表明,随乳化剂浓度增加、单体及TiO2用量的减少,聚合反应速率增高.TEM、SEM和FTIR证实了P(BA-MMA-AA)包覆在纳米TiO2表面,并与TiO2粒子有较强相互作用.用DSC、GPC和1H-NMR表征共聚产物,发现随TiO2加入,共聚物分子量降低,共聚链段中BA单元比例增加,导致聚合物玻璃化转变温度降低.  相似文献   

5.
双连续相微乳液辐射聚合制备多孔材料的研究   总被引:6,自引:0,他引:6  
利用6 0 Co γ射线在室温下辐照双连续相微乳液体系以制备多孔聚合物材料 ,试图在控制多孔材料的微孔结构形态和减少微乳液聚合过程中的相分离方面做一些探索 .通过电导率的测量分析微乳液的结构类型 ,并确定微乳液的双连续相区域范围 .微乳液聚合后所得的样品的孔结构和聚合前的微乳液结构类型有关 ,扫描电镜和热重分析的结果表明双连续相微乳液在聚合时容易发生相分离 ,未必能够得到开孔结构的聚合物 .但适当控制聚合前微乳液的组成 ,如选择合适的水油比例、交联剂的用量和加入一些功能性单体 (如甲基丙烯酸或丙烯酸钠 ) ,可以有效地抑制相分离 ,调节所得聚合物的结构形态 .  相似文献   

6.
通过乳化剂OP-10的乳化作用,将油相为溶有苯胺单体的1-丁基-3-甲基咪唑六氟磷酸盐([bmim]PF6)离子液体与水形成了水包油型微乳液.利用该微乳液制备了纳米粒径的导电聚苯胺颗粒.红外光谱和能量散射谱分析结果表明,离子液体负离子已掺杂进入聚苯胺分子链,所得聚苯胺颗粒热稳定性和电化学稳定性好,且具有良好的充放电性能.  相似文献   

7.
聚苯乙烯微球表面的聚集态结构和苯基堆砌   总被引:4,自引:0,他引:4  
用扫描隧道显微镜(STM)研究微乳液聚合法制备的聚苯乙烯微球.STM图像显示这种聚苯乙烯微球的表面具有不同的聚集态结构.在表面的某些区域,聚合物链没有相互缠结现象,而是有序地堆积在一起.在适当的情况下,同一条链上的苯基还会堆砌起来,形成一种平行移位的结构,其类似于苯双分子的最稳定结构.还用STM研究了用苯溶胀过的聚苯乙烯粒子,并观察到了类似螺旋结构的聚合物链以及扭曲的聚合物链.在聚苯乙烯微球中,聚合物链段和苯基的有序堆砌状态的存在,是因为苯乙烯单体已经在微乳液内的某些区域堆砌成有序的状态.  相似文献   

8.
聚合物乳液作为基本成膜物已在建筑涂料、木器漆和工业漆方面得到了广泛应用 .由于多数小分子染料与成膜物及其他组分的相容性不够好 ,常常导致这类彩色的聚合物产品涂刷时色泽不均、涂膜在使用过程中易于变色等缺陷 .将生色基团键合到聚合物分子链上 ,可以从根本上克服因相容性差而引起的染料小分子的迁移 ,同时还可以显著提高产品的保光保色性能[1] .1 986年 ,BRIAN通过丙烯酸酯与含偶氮基烯类单体的乳液共聚合 ,制备出了一类可直接用于纺织印染行业的彩色乳液[2 ,3] .1 994年 ,SOSNOWSKI等制备出了用于荧光标签的乳液聚合…  相似文献   

9.
超声辐照引发MMA微乳液聚合   总被引:17,自引:0,他引:17  
研究了超声波引发甲基丙烯酸甲酯(MMA)的微乳液聚合.辐照40min时单体转化率高达90%.透射电镜观察发现,PMMA微乳液平均粒径为36.5nm,粒径分布窄,表明超声波引发是制备PMMA微乳液的有效方法.采用分光光度计对微乳液聚合过程中乳胶粒的形成和大小进行了间接表征,研究了超声功率输出、乳化剂、助乳化剂、单体和引发剂对MMA微乳液聚合的影响.  相似文献   

10.
《化学通报》2005,68(2):158-160
[w0 1 3 ]乳液法制备中空聚合物微球PreparationofHollowPolymerParticlesbyEmulsionPolymerization白飞燕 方仕江 (浙江大学化学工程与生物工程学系化学工程联合国家重点实验室聚合反应工程实验室 杭州  3 1 0 0 2 7)  介绍了最近国内外有关乳液法技术 ,包括SPG(ShirasuPorousGlass)膜乳化聚合法、W O W乳液聚合法和封装非溶剂乳液聚合法制备中空聚合物微球的研究进展 ,着重分析了上述几种方法的成孔机理及其优缺点 ,并简单介绍了中空聚合物微球的应用领域。  Theprogressinthepreparationofhollowpolymerparticlesbyvariou…  相似文献   

11.
Isothermal phase diagrams of the system cetyltrimethylammonium bromide (CTAB)/n‐butanol/n‐octane/water were constructed, and the effect of the oil (n‐octane) contents on the microemulsions was studied at 40 °C. We determined the microemulsion structures of two systems, CTAB/n‐butanol/10% n‐octane/water and sodium dodecyl sulfonate (As)/n‐butanol/20% styrene/water, by conductivity measurements to investigate the polymerization of acrylamide and styrene in the two microemulsion systems. The polymerization kinetics of the water‐soluble monomer acrylamide in CTAB micelles and the different CTAB/n‐butanol/10% n‐octane/water microemulsion media [water‐in‐oil (W/O), bicontinuous (BC), and oil‐in‐water (O/W)] were studied with water‐soluble sodium bisulfite as the initiator. The maximum polymerization rate in CTAB micelles was found at the second critical micelle concentration. A mechanism of polyacrylamide formation and growth was proposed. A connection between the structures of the microemulsions and the polymerization rates was observed; the maximum polymerization rate occurred at two transition points, from W/O to BC and from BC to O/W, and the polyacrylamide molecular weights, which depended on the structures of the microemulsions, were also found. A square‐root dependence of the polymerization rates on the initiator concentrations was obtained in CTAB micelles and O/W microemulsion media. The polymerization of the oil‐soluble monomer styrene in different As/n‐butanol/20% styrene/water microemulsion media (W/O, BC, and O/W) was also investigated with different initiators: water‐soluble potassium persulfate and oil‐soluble azobisisobutyronitrile. A similar connection between the structures of the microemulsions and the conversions of styrene in CTAB/n‐butanol/10% n‐octane/water for the polymerization of acrylamide was observed again. The structures of the microemulsions had an important role in the molecular weights and sizes of polystyrene. The polystyrene particles were 10–20 nm in diameter in BC microemulsion media and 30–60 nm in diameter in O/W microemulsion media according to transmission electron microscopy. We determined the solubilization site of styrene in O/W microemulsion drops by 1H NMR spectra to analyze the results of the microemulsion polymerization of styrene. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3320–3334, 2001  相似文献   

12.
Water and oil dual-absorption materials for application in oil well cement for self-healing micro creaks has been synthesized through bicontinuous microemulsion polymerization. Bicontinuous structure of microemulsion was used to implement the performance of absorbing both water and oil. Phase behavior of the microemulsion system was analyzed by “ε–β fish-shape phase diagram” from which middle phase line was obtained to provide the formula of polymerization. The product was characterized using scanning electron microscope (SEM), pore size distribution (BET), water/oil absorption rate test and water/oil absorption speed test. SEM analysis showed that neither water absorption component nor oil absorption component formed separated particles, while they formed continuous component respectively. Due to the bicontinuous structure and pores, the materials have fast water and oil absorption rate.  相似文献   

13.
The principal subject discussed in the current paper is the radical polymerization of styrene in the three- and four component microemulsions stabilized by a cationic emulsifier. Polymerization in the o/w microemulsion is a new polymerization technique which allows to prepare the polymer latexes with the very high particle interface area and narrow particle size distribution. Polymers formed are very large with a very broad molecular weight distribution. In emulsion and microemulsion polymerizations, the reaction takes place in a large number of isolated loci dispersed in the continuous aqueous phase. However, in spite of the similarities between emulsion and microemulsion polymerization, there are large differences caused by the much larger amount of emulsifier in the latter process. In the emulsion polymerization there are three rate intervals. In the microemulsion polymerization only two reaction rate intervals are commonly detected: first, the polymerization rate increases rapidly with the reaction time and then decreases steadily. Essential features of microemulsion polymerization are as follows: (1) polymerization proceeds under non-stationary state conditions; (2) size and particle concentration increases throughout the course of polymerization; (3) chain-transfer to monomer/exit of transferred monomeric radical/radical re-entry events are operative; and (4) molecular weight is independent of conversion and distribution of resulting polymer is very broad. The number of microdroplets or monomer-starved micelles at higher conversion is high and they persist throughout the reaction. The high emulsifier/water ratio ensures that the emulsifier is undissociated and can penetrate into the microdroplets. The presence of a large amount of emulsifier strongly influences the reaction kinetics and the particle nucleation. The mixed mode particle nucleation is assumed to govern the polymerization process. At low emulsifier concentration the micellar nucleation is dominant while at a high emulsifier concentration the interaction-like homogeneous nucleation is operative. Furthermore, the paper is focused on the initiation and nucleation mechanisms, location of initiation locus, and growth and deactivation of latex particles. Furthermore, the relationship between kinetic and molecular weight parameters of the microemulsion polymerization process and colloidal (water/particle interface) parameters is discussed. In particular, we follow the effect of initiator and emulsifier type and concentration on the polymerization process. Besides, the effects of monomer concentration and additives are also evaluated.  相似文献   

14.
Effect of the structures of microemulsions on chemical reactions   总被引:2,自引:0,他引:2  
Two kinds of chemical reactions were studied in two different microemulsion systems: cetyltrimethylammonium bromide/1-butanol/10 and 25% n-octane/water and sodium dodecyl sulfonate/1-butanol/20% styrene/water. One reaction is a hydrolysis reaction, in which aspirin and 2,4-dinitrochlorobenzene were used as the hydrolysis substrates. The second reaction is the polymerization of styrene, which was initiated by using two initiators, water-soluble K2S2O8 and oil-soluble 2,2′-azobis(isobutyronitrile), and, at the same time, the polymerization of acrylamide, which was initiated by NaHSO3, was also studied. All the hydrolysis reaction experimental results show that the hydrolysis is greatly affected by the structures and the structural transitions of microemulsions. The hydrolysis rates are higher in water-in-oil (W/O) microemulsion media and decrease with the addition of water. The rates increase in bicontinuous (BC) microemulsions and decrease in oil-in-water (O/W) microemulsions. The transition points of the hydrolysis rates occurred at the two microemulsion structural transition points from W/O to BC and from BC to O/W. The polymerization relationships between the conversions of styrene, the molecular weights of polystyrene and the water contents of the microemulsion system were obtained. The effects of microemulsion structures on the sizes of the polystyrene particles and on the molecular weights of the polymers are discussed. Polystyrene particles with diameters of 10–60 nm were observed by microscopy. Our experimental polymerization results show that microemulsions are suitable as media for the production of polymers, the molecular weights and the particle sizes of which can be controlled and predicted by variations in microemulsion structures. Received: 11 July 1999/Accepted: 26 July 1999  相似文献   

15.
微乳液中苯乙烯聚合反应的研究   总被引:2,自引:0,他引:2  
测定了十二烷基磺酸钠(As)/正丁醇/20%苯乙烯/水体系相平衡。用油溶性偶氮二异丁腈(AIBN)和水溶性过二硫酸钾(K~2S~2O~8)为引发剂,研究了油包水(W/O)、双连续(BC)和水包油(O/W)型微乳液介质中苯乙烯的聚合反应。得到了苯乙烯转化率和聚苯乙烯分子量与体系水含量之间的关系,讨论了微乳液结构对聚合作用的影响。并通过电镜观察了聚苯乙烯的形貌,求得了聚苯乙烯的粒径,同时用^1HNMR研究了苯乙烯在微乳液液滴中的增溶位置,分析了聚合作用的实验结果。  相似文献   

16.
Nanosized hydrogel particles prepared through inverse microemulsion polymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid, using the combination of an oil soluble emulsifier (SPAN80) with a water soluble emulsifier (TWEEN 80), and precise determination of HLB range related to the formation of stable single phase microemulsions.

The effect of crosslink density, water phase to oil phase ratio, and the hydrophilic-lipophilic balance (HLB) value on polymerization rate, particle size, and swelling ratio were investigated. It found that polymerization rate and particle size are strongly dependent on the water phase to oil phase ratio. Hydrogel samples prepared using oil soluble and water soluble initiators and the results showed that the initiator type had a great influence on monomer conversion and particle size. Effect of pH on equilibrium swelling of hydrogels was studied by dynamic light scattering and hydrogels showed pH-independent swelling behavior in a broad range of pH values. We also reported and discussed the crosslink density distribution in nanogels prepared by inverse microemulsion polymerization.  相似文献   

17.
A quasi-spontaneous process of mass transfer takes place at the interface of a monomer and water in the presence of surface-active substances soluble in both phases as a result of their diffusion through the interfacial boundary. This process is accompanied by the formation of a microemulsion whose particle size depends on the emulsifier concentration and its molecular structure. While investigating various nonionic surface-active substances as emulsifiers in the emulsion polymerization of vinyl acetate, it was established that polymerization occurs in droplets of the monomer microemulsion in water, which are formed as a result of mass transfer at the interface.  相似文献   

18.
This tutorial review first details the uncontrolled microemulsion polymerization mechanism, and the RAFT polymerization mechanism to provide the necessary background for examining the RAFT microemulsion polymerization mechanism. The effect of the chain transfer agent per micelle ratio and the chain transfer agent aqueous solubility on the RAFT microemulsion polymerization kinetics, polymer molecular weight and polydispersity, and polymer nanoparticle size are discussed with a focus on oil-in-water microemulsions. Modeling of RAFT microemulsion polymerization kinetics and the resulting final polymer molecular weight are presented to assist with the analysis of observed experimental trends. Lastly, the current significance of RAFT microemulsion polymerization and the future directions are discussed.  相似文献   

19.
微乳液催化苯乙烯聚合反应   总被引:1,自引:1,他引:1  
郝京诚  石元昌 《分子催化》1997,11(2):157-159
微乳液催化苯乙烯聚合反应1)郝京诚汪汉卿2)(中国科学院兰州化学物理研究所兰州730000)石元昌李干佐(山东大学胶体与界面化学研究所济南250100)关键词微乳液催化苯乙烯聚合微乳液[1]是油、水、表面活性剂和助表面活性剂在适当比例下自发形成的热力...  相似文献   

20.
提出并实施了反相微乳液为模板合成介孔聚合物的新方法. 通过考察氯仿/CTAB/水三元系反相微乳液的稳定性, 以及均相微乳液粒径变化规律, 得到了三元反相微乳液体系的稳定区域. 以(NH4)2S2O8为引发剂, 利用此反相微乳液为模板合成得到介孔聚苯乙烯材料. 产物的XRD图谱中有两个明显的衍射峰, 对应的晶面间距离d分别为2.6和1.3 nm, 1/d值之比等于1:2, 为层状结构. N2气吸附/脱附曲线表明大部分孔径为1.7 nm, 与动态光散射测得的微乳液液滴的尺寸相一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号