首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A new type of nanoporous SiO2 aerogel microsphere materials were synthesized by using SiO2 sols as raw materials in the W/O emulsion formed by the emulsification of Tween-85 and Span-80. The obtained wet gel microspheres were aged by a successive solvent exchanging of alcohol, tetraethylorthosilicate (TEOS)/ethanol solution and ethanol at 60 ℃, and then were dried at ambient pressure to produce SiO2 aerogel microspheres. The resultant SiO2 aerogel microspheres were characterized by SEM, TEM and nitrogen adsorption-desorption. The results show that the prepared SiO2 aerogel microspheres are nanoporous materials with coherent network nanoporous structure consisting of SiO2 nanoparticles with an average diameter of about 10 nm. The apparent density of a typical sample is 0.4 g·cm-3, while the specific surface area is 386 m2·g-1, and the average pore size is 18 nm with the porosity of 84%. Various SiO2 aerogel microspheres with the apparent particle sizes of 10~200 μm can be synthesized by controlling the stirring speed at 600~2 000 r·min-1, the volume ratio of water/oil from 0.10 to 0.30, and the weight ratio of Tween-85/Span-80 less than 0.40.  相似文献   

2.
新型阴极材料Ba0.5Sr0.5Co0.8Fe0.2O3-σ制备与性能研究   总被引:1,自引:0,他引:1  
Ba0.5Sr0.5Co0.8Fe0.2O3-σ(BSCF), a new cathode material for solid oxide fuel cell (SOFC), was synthesized by polyacrylicacid (PAA) method. The lattice structures of samples calcined at different temperatures were characte-rized by XRD. Shrinkage, porosity and pore size of the porous BSCF as a function of sintering temperature were investigated. It was found that the cubic perovskite structure could be formed after calcination at 800 ℃ for 2 h, but not well crystallized as seen from some unknown phases, and the pure cubic perovskite structure was formed after calcination at 1 150 ℃ for 2 h. The particle size of BSCF was less than 1~2 μm. The shrinkage of the porous BSCF increased with sintering temperature, but the opposite was true for the porosity. After sintering at 1 100 ℃ for 4 h, the porous BSCF was still in an appropriate structure, with porosity of 29% and electrical conductivity above 400 S·cm-1.  相似文献   

3.
微乳法制备纳米TiO2 /SiO2的结构及光催化研究   总被引:1,自引:0,他引:1  
Nanosized TiO2 and TiO2/SiO2 particles were prepared by hydrolysis of tetrabutyl titanate (TBOT) and tetraethyl orthosilicate (TEOS) in the TX-100 reverse microemulsion. These particles were characterized by TG-DSC, XRD, FTIR, TEM,N2 adsorption-desorption. Their photocatalytic activity was tested by degradation of methyl orange. The result shows that TiO2/SiO2 nanoparticles are with a monodispersed spherical phase and a uniform size distribution,and TiO2 particles are dispersed on the surface of SiO2. The band for Ti-O-Si vibration in FTIR was observed, the Ti-O-Si bond increased the stability of anatase TiO2, suppressed the phase transformation of titania from anatase to rutile. And due to the addition of SiO2, the average size of titania decreased from 38 nm in pure TiO2 to 5 nm in TiO2/SiO2. It was found, under UV light irradiation, TiO2/SiO2 particles showed higher activity than pure TiO2, and TiO2/SiO2(1/1) particles showed the highest photocatalytic activity on the photocatalytic decomposition of methyl orange, which was influenced by crystal structure, particle size, crystallinity and Surface area Characteristics.  相似文献   

4.
Nd2O3添加量对BaTiO3陶瓷介电性能的影响   总被引:4,自引:0,他引:4  
BaTiO3 ceramics doped with Nd2O3(the additive content was respectively 0.001,0.002,0.003,0.005,0.01,0.03mol)were prepared by Sol-Gel method. Effects of Nd2O3 contents on the dielectric constant (ε), the dielectric loss (tanδ) ,the Curie-temperature (TC) and the resistivity (ρ) of BaTiO3 ceramic were studied. When Nd2O3 content was 0.001mol and 0.002mol, the dielectric constant was increased obviously, but the dielectric loss was also increased. When Nd2O3 content was 0.003mol, the dielectric constant was increased, and the dielectric loss was decreased, which was suitable for application in condenser. The resistivity was decreased obviously with the increasing of Nd2O3 contents, the resistivity was the smallest when Nd2O3 content was 0.001mol. The Curie-temperature was also decreased with the increasing of Nd2O3 contents.  相似文献   

5.
溶胶-凝胶法制备掺锰钛酸钡纳米粉体及其陶瓷   总被引:1,自引:0,他引:1  
The Mn-doped barium titanate nanosized powders and ceramics were prepared via the sol-gel process. The powders and ceramics were characterized by XRD, SEM and TEM. The dielectric properties of the ceramics were also measured. The influences of calcination temperature and Mn concentration on the microstructure, dielectric properties and phase composition of BaTiO3 nano-powders and ceramics were discussed. The results indicated that the BaTiO3-based powders doped with 1.0mol% Mn were mainly in cubic BaTiO3 phase, but the tetragonal phase became more evident when the calcination temperature increased. After sintering, Mn-doped ceramics were mainly composed of cubic BaTiO3. Specially, a new phase of hexagonal crystal BaTiO3 and BaMnO3 existed in the ceramics doped with 5.0mol% Mn and the ceramic grains were in ‘clintheriform’. The structure of ‘clintheriform’ led to the poor densification of ceramics, reducing the dielectric constant obviously. The dielectric constants of BaTiO3 ceramics first increased and then decreased as the Mn concentration increased. The room temperature dielectric constant was 2 290 and the lowest dielectric loss was 0.004 when the Mn concentration was 0.5mol%.  相似文献   

6.
纳米尖晶石LixMn2O4的制备与电化学性能表征   总被引:11,自引:0,他引:11  
Nano-spinel LixMn2O4(0.6 ≤x≤ 1.0) was synthesized by two steps of coprecipitation and calcination. The influences of calcination temperature, time and Li/Mn ratio on the crystal structure and the particle size of LixMn2O4 were investigated. It was shown that the higher the calcination temperature, the more complete the crystal structure, and the larger the particle size. Moreover, the influence of calcination time on the crystal structure was insignificant when it was more than 3h at 700℃. With the increase of x in LixMn2O4 in the range of 0.6~1.0, the d111 and lattice parameter a increased first and then decreased. The electrochemical properties of nano-spinel LiMn2O4 using as cathode material of lithium-ion battery were studied. The low discharge capacity might be due to the irreversible capacity loss brought by the large surface area and lattice vacancies of the nano-spinel.  相似文献   

7.
方志刚  胡红智 《无机化学学报》2006,22(12):2222-2228
With the level of B3LYP/Lanl2dz of density functional theory and advisable adsorption models designed, the adsorption properties of the most stable cluster of Ni2Fe2P were calculated, and four stable configurations with the adsorption of hydrogen were gained. The geometries and HOMO contributions of 3d orbital of metal atoms and energy level properties of adsorption configurations were concerned and their Infrared Spectrum were simulated and predicted. The bond lengths and bond orders and vibration frequencies concerned synthetically, the adsorption mechanisms of hydrogen molecular on amorphous alloys Ni40Fe40P20 surfaces were discussed in the microcosmic aspect. The hydrogen molecules adsorbing on the clusters were dissociated. In the clusters′ Infrared Spectrums of hydrogen adsorption, there were the vibration peaks with the frequency less than 500 cm-1 caused by metal atoms and other vibration peaks with the frequency more than 500 cm-1 caused by hydrogen atoms. Compared with the energy level DOS of the clusters before and after adsorption, it was found, that the new adsorption activity sites generated after the adsorption of hydrogen, as well as easy way for metal atoms providing electrons and participating subsequence reactions were gained.  相似文献   

8.
赖欣  毕剑  史芳  高道江  肖定全 《无机化学学报》2006,22(10):1929-1932
Well-crystallized LiNiO2 thin films were prepared directly on nickel substrates in LiOH solution by constant current electrochemical deposition technique at 95 ℃. The as-prepared LiNiO2 thin films were characterized by using XRD, SEM and XPS, and the results reveal that the as-prepared LiNiO2 thin films are dense and uniform in surface and show hexagonal structure. The influence of processing parameters such as reaction temperature, duration, electrical current density as well as the concentration of LiOH solution on the structure and morphologies of as-prepared LiNiO2 thin films were studied,and the preferable electrochemical processing conditions for preparing LiNiO2 thin films were suggested.  相似文献   

9.
锂离子电池正极材料LiMn2O4的合成与晶体结构(英)   总被引:2,自引:0,他引:2  
Spinel LiMn2O4 powders were prepared using two-step synthesis method consisting of solid-state reaction method and citrate modified sol-gel method. The effects of the calcination temperature and the Li/Mn ratio of raw materials were studied on the physicochemical and electrochemical properties of the spinel LiMn2O4 powders, such as crystallinity, lattice constant and density. The title compound was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Polycrystalline LiMn2O4 powers calcined at 750 ℃ were found to be composed of very uniformly-sized microcrystal with an average particle size of 300 nm. The improvement in electrochemical properties was mainly attributed to the process of re-grinding by absolute alcohol.  相似文献   

10.
SiO2 monoliths with double-pore structure were synthesized with tetraethyl orthosilicate, polyethylene glycol, starch, ethanol and ammonia as the main raw materials via a sol-gel route. The effect of different content of starch of the samples was studied on the mesopore structure, macropore appearance, hydrothermal stability and enzyme activity to immobilize gluczyme. The results indicate that porous blocks with mesopores of 10~12 nm and macropores of 10~30 μm can be formed by the removal of polyethylene glycol and starch after heating at 600 ℃. The minimal density of the obtained samples was 0.34 g·cm-3 and the maximal porosity was 76%. After being immersed in water at 80 ℃ for 7 d, the density, porosity and shape of N2 adsorption-desorption curves of the samples were almost unchanged, showing that the sample has a good hydrothermal stability. The initial enzyme activity of sample P2KD30 was 11 190 U, and definite enzyme activity could be maintained after five cycles.  相似文献   

11.
溶胶—凝胶法制备NiO/SiO2催化剂研究   总被引:11,自引:0,他引:11  
分别以正硅酸乙酯、硝酸镍为硅源和镍源,采用溶胶-凝胶法,经超临界流体干燥和普通干燥制备了NiO-A-SiO2、NiO-G-SiO2催化剂;以气凝胶和干凝胶为载体,采用浸渍法制备了NiO/A-SiO2、NiO/G-SiO2催化剂。并用XRD、TEM、BET、TPR等手段,研究了制备方法对催化剂织构、结构和Ni物种存在形态的影响,发现NiO-A-SiO2和NiO-G-SiO2催化剂上高度分散的NiO簇团与SiO2之间有较强的相互作用,其顺酐液相选择加氢转化率低于10%;NiO/G-SiO2催化剂上,以单一物种形态存在的NiO与SiO2相互作用弱,顺酐转化率为42%;NiO/A-SiO2催化剂上,以多种形态存在的微量NiO与SiO2间的相互作用较复杂,其顺酐液相选择加氢的转化率和丁二酸酐的选择性分别可达100%和98%。  相似文献   

12.
前驱物对NiO/SiO_2气凝胶催化剂性能的影响   总被引:4,自引:0,他引:4  
分别用硝酸镍、醋酸镍和氯化镍为活性组分前驱物,正硅酸乙酯为硅源,采用 溶胶凝胶超临界流体干燥法制备了N-SiO_2,Ac-SiO_2和C-SiO_2催化剂,经TEM, TPR,XRD,IR等物性结构表征及催化加氢活性评价结果表明:前驱物对由溶胶凝胶 法制备催化剂中氧化镍的分散性,晶粒大小及与载体的相互作用都有明显的影响, N-SiO_2催化剂有Ni-O-Si键形成,NiO呈簇团结构,粒径最小,分散性最好,但加 氢活性最低;Ac-SiO_2和C-SiO_2催化剂中氧化镍呈微晶态,与载体相互作用较弱 。在三种催化剂中,NiO与载体相互作用强弱顺序为:N-SiO_2 > Ac-SiO_2 > C- SiO_2,但加氢活性大小顺序相反为:C-SiO_2 > Ac-SiO_2 > N-SiO_2;C-SiO_2催 化剂加氢活性和丁二酸酐的选择性均在99%以上。  相似文献   

13.
NiO/γ-Al2O3催化剂中NiO与γ-Al2O3间的相互作用   总被引:27,自引:0,他引:27  
利用溶胶-凝胶法制备了不同含量的 NiO/γ-Al_2O_3催化剂,通过XRD,XPS和 TPR等技术考察了制备方法、NiO含量和焙烧温度对催化剂结构和Ni存在状态的影响,发现溶胶-凝胶法制备的催化剂活性组分NiO与担体γ-Al_2O_3间具有强相互作用.详细地讨论了Ni物种的还原状态与以“Ni~0”为活性中心的催化反应的活性之间的关系.溶胶-凝胶法制备的催化剂经高温焙烧后,Ni以一种类尖晶石结构的固溶体形式存在,这种固溶体态尖晶石可能会抑制Ni的烧结和流失,提高催化剂的稳定性.  相似文献   

14.
镍基催化剂的制备、表征及选择加氢性能   总被引:10,自引:0,他引:10  
研究了溶胶-凝胶-超临界流体干燥法(sol-gel-SCFD)和浸渍法(IM)制备的SiO2负载镍催化剂的顺酐液相加氢性能,并用XRD、TPR、IR等手段对催化剂的体相和表面结构进行了表征.结果表明: 1) Sol-Gel-SCFD法制备的催化剂其体相和表面结构与镍含量有关,当镍含量 < 30%(质量分数)时,NiO主要以簇团形式存在;随镍含量增高到50%,过量的NiO以微晶态存在并覆盖部分NiO簇团.顺酐(MA)加氢产物有丁二酸酐(SA)和γ-丁内酯(γ-BL),它们的选择性随镍含量增加呈规律性变化;在镍含量为30%的催化剂上γ-BL选择性呈现最大值. 2) IM法制备的催化剂其体相和表面结构与镍含量无关,当镍含量在6%~30%范围内变化时,NiO都以结晶态存在,MA加氢产物为SA; NiO与SiO2的相互作用随镍含量增加而减弱,SA的选择性不变.  相似文献   

15.
采用溶胶凝胶法制备了一系列不同TiO2含量的TiO2-Al2O3复合载体,并通过浸渍法制备了NiO/TiO2-Al2O3催化剂。分别考察了不同TiO2含量的NiO/TiO2-Al2O3催化剂及反应温度对CO甲烷化催化性能的影响。实验结果表明,当复合载体中TiO2质量分数为30%,反应温度为350~450 ℃时,催化剂催化活性较高。利用N2吸附-脱附(BET)、X射线衍射(XRD)及H2程序升温还原(H2-TPR)等手段对催化剂物化性能进行了表征。结果表明,加入适量的TiO2能抑制镍铝尖晶石NiAl2O4物种的生成,改善NiO的表面分散性能,避免大晶粒NiO的形成,也改善了催化剂的还原性能,从而提高催化剂的CO甲烷化活性。  相似文献   

16.
采用固相浸渍法制备了一系列NiO/CeO2催化剂,并通过与常规湿浸渍法比较,考察了制备方法对催化剂和CO氧化反应性能的影响.同时结合X射线衍射(XRD),N2吸附-脱附(BET),透射电镜(TEM),氢气-程序升温还原(H2-TPR),拉曼(Raman)光谱,X射线光电子能谱(XPS)等手段对催化剂的结构和表面物种分散状态进行了表征.CO氧化活性测试结果表明,当镍负载量相同时,固相浸渍法制备的催化剂相比于湿浸渍法表现出更好的催化性能.TEM、XPS、H2-TPR结果表明,固相浸渍法更有利于加强镍铈间的相互作用和得到高分散的镍物种,从而促进镍物种的还原.Raman结果表明固相浸渍法相比于湿浸渍法能产生更多氧空位,这有利于氧气在催化剂表面的活化,使得CO氧化反应更容易进行.  相似文献   

17.
NiO/LaMnO3催化剂用于乙醇水蒸气重整反应   总被引:3,自引:0,他引:3  
采用柠檬酸络合-浸渍法制备了NiO/LaMnO3钙钛矿型复合氧化物催化剂并将其应用于乙醇水蒸汽重整制氢反应, 考察了NiO含量、焙烧温度对催化剂性能的影响, 采用XRD、TPR和热分析等手段对催化剂进行了表征. 结果表明, 该催化剂具有高活性、高选择性和良好的稳定性. 催化剂中的NiO含量和焙烧温度对催化性能有显著影响. 在原料气体积组成为20%(体积分数, φ) C2H5OH 和水以及80%(φ)N2, 其中水醇摩尔比为3:1, 空速为80000 mL·h-1·g-1 cat, 反应温度为400 ℃时, 15%(质量分数, w)的NiO/LaMnO3上, 乙醇转化率接近100%. 关联催化剂活性和TPR及XRD实验结果, 发现催化剂的高活性源于由催化剂前驱体中进入钙钛矿型复合氧化物晶格中的镍离子被还原所得的金属镍.  相似文献   

18.
There are abundant supplies of mixture gases containing CH4, C2H6, C3H8 and C4H10, etc. from FCC (Fluidized Catalytic Cracking) tail gas, refinery gas, etc. Commonly, the mixture gases are primarily combusted to carbon dioxide because the complete separation of CH4, C2H6, C3H8 and C4H10, respectively, from the mixture gases may not be economical. Provided that syngas (CO+H2) could be produced from the mixture gases over nickel supported catalysts with high selectivity and conversion,…  相似文献   

19.
The previous studies indicated that the unsupported and alumina supported nickel oxide catalysts are the attractive candidates for the oxidative dehydrogenation of ethane (ODE) reaction at lower reaction temperature[1,2]. In the present study, NiO/ZrO2 catalysts were prepared by the impregnation, complex of ammonia and coprecipitation, respectively, using the conventional incipient wetness technique. Over all samples used in this study, no NiO crystal structure was detected by XRD measurements carried out in parallel with the present work, which indicated the nickel oxide was highly dispersed on the support The blank testing indicated that the support ZrO2 had very little activity below 600℃. Comparing with the unsupported nickel oxide, it was found that the activity of NiO/ZrO2 catalysts prepared by the methods mentioned above decreased slightly and the selectivity for ethylene improved. With the increasing temperature, the ethane conversion increased and the selectivity for ethylene decreased However, the cracking of the ethane occurred at ca.450℃ on all samples prepared by different methods. The optimum catalytic behavior could be obtained on 5wt%NiO/ZrO2 prepared by coprecipitation, with the ethane conversion of 26.2% and selectivity for ethylene of 51.8% at as low temperature as 350℃. The sample prepared by coprecipitation and calcined at 500℃ was calcined again at 600℃ for 5 h,the activity decreased obviously, which may be attributed to the existence of the interaction between nickel oxide and support taking into account for the high dispersion of NiO on ZiO2.  相似文献   

20.
采用原子层沉积法将NiO沉积到粒径约为100 mm、平均孔径为14 nm的中孔SiO2颗粒的壳层(壳层厚度11 nm)区域,并分别在450和600°C进行热处理。将制得的这两种Ni/SiO2样品用于催化甲苯分子吸附及其氧化为CO2的反应中。结果发现,在450°C热处理的样品在甲苯吸附及其随后氧化为CO2的反应中表现出更高的活性;当将该样品暴露在160°C甲苯蒸气中,然后加热到450°C时,排放出CO2,而几乎没有甲苯脱附出来。这表明该催化剂可用于在200°C以下操作的、用于消除建筑物内有味气体的设备中,且该催化剂可以在450°C下经过热处理得到再生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号