首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文使用有限元法模拟氮化铝晶体生长系统的温度场,分析了坩埚的位置、感应线圈的匝间距以及原料与晶体之间的距离对温度场分布的影响.结果表明:坩埚位置主要影响系统中最高温度的位置及温度梯度的大小原料与结晶体之间的距离仅对温度梯度有影响;感应线圈的匝间距则影响加热效率的高低.通过合理优化以上三个条件,可以获得适宜于高品质氮化铝晶体快速制备的理想热场.  相似文献   

2.
立式MOCVD反应室中一种刻槽基座的热分析   总被引:1,自引:0,他引:1  
在立式感应加热的氮化物MOCVD反应室中, 提出了一种刻槽结构的基座;利用有限元法,给出了使衬底温度分布最均匀的槽的位置和大小.与传统的基座相比,这种刻槽优化后的基座,使衬底温度分布的均匀性显著提高.另外,通过对基座温度随加热时间变化的分析,发现刻槽基座的热传导规律,即刻的槽改变了基座中感应产生热量的热传导方向,衬底中的热量是由槽上下基座部分传递而来的,且随时间的增大,基座的温度趋于恒定,衬底的温度趋于均匀,均匀的衬底温度有利于提高生长薄膜的质量.  相似文献   

3.
用专业晶体生长软件(CG-Sim)对制备太阳能级准单晶硅用真空感应铸锭炉的热场结构以及在熔炼过程中硅熔体的流动行为进行了研究.结果表明,熔体中电磁力是熔体流动的驱动力之一,并且感应线圈与熔体高度的比值(k)对熔体内电磁力的大小和分布具有很大的影响,当k值为1.2时,熔体内形成一个上下贯通的涡流,有利于杂质的挥发.同时,当感应线圈频率在3000~5000 Hz范围时,熔体对流强度较低,可以增加坩埚-熔体边界层的厚度,降低熔体中的氧含量.  相似文献   

4.
考虑西门子反应器中对流、辐射以及化学反应热三种热传递形式,建立了硅棒的二维轴对称热传递模型.相比于对流和化学反应热,辐射是最主要的传热方式.基于此模型分析了12对棒西门子反应器中硅棒辐射位置和反应器壁发射率对硅棒内部径向温度分布以及电流密度分布的影响.结果表明:直流电加热时,硅棒内部径向方向上形成了明显的温度梯度,且外环硅棒内部温度梯度要大于内环硅棒温度梯度;降低反应器壁发射率,外环硅棒温度梯度减小,电流密度分布更为均匀.  相似文献   

5.
本文提出一个用PVT法生长SiC晶体的坩埚的新颖设计.分析了生长腔中有无锥形档板对腔内及籽晶温度场的影响;比较了档板取不同厚度时SiC粉源升华面和籽晶表面的温度分布.得出了在腔内增设档板后晶体生长面的温度更趋均匀的结论;获取了随着档板厚度的增加,腔内的轴向温度梯度随之增加,但同时晶体生长面的温度也会降低的设计原则.根据计算结果,选取档板厚度等于2mm为优化参数.  相似文献   

6.
设计一种辐射加热装置环状布置的多晶硅定向凝固设备,通过构建非均匀热场,使硅熔体侧壁区域温度高于中央区域,在熔体密度差的作用力下,液相自然对流强度加剧,使固液界面富集的杂质加速汇聚至熔体表面,提高杂质提纯效率,并在满足工艺要求的同时达到节能目的.进行数学建模和数值模拟研究来阐述该热场的设计原理,并通过试验验证.试验表明,环状加热方式使晶粒生长方向略微外倾,相对于传统加热方式,其能耗更低、并提高了除P、Al效率.  相似文献   

7.
泡生法蓝宝石晶体炉内保温屏是炉内温场的重要部件,并对晶体生长有重要影响.本文对不同的保温屏材料的影响进行了计算分析.通过分析加热功率、晶体温度分布、固液界面形状,比较钨钼、石墨、氧化锆三种材料的保温屏的保温性能和对晶体生长的影响,结果表明:氧化锆保温性能优于钨钼保温屏,而石墨保温性能最差.选用钨钼保温屏和氧化锆保温屏晶体温度分布较为接近,且高于选用石墨保温屏时的温度分布.石墨保温屏对应的固液界面形状最大,钨钼屏其次,而氧化锆材料时形状最平缓.  相似文献   

8.
管道热丝CVD金刚石膜反应器温度场的数值计算   总被引:1,自引:0,他引:1  
在热丝化学气相沉积(HFCVD)金刚石膜的传统管道反应器中,对不同传热机制下管道壁温度场的空间分布进行了模拟计算.结果表明,管道壁温度场在纯热辐射机制作用下的分布很不均匀;在绝热和恒温的边界条件下考虑热传导作用后,管道壁温度分布的均匀性大大提高;进一步的热对流作用仅提高管道壁的总体温度,并不显著改变管道壁温度场的均匀性分布.  相似文献   

9.
改良西门子法制备多晶硅过程中,化学气相沉积所需能量全部由电流加热硅棒提供.本文考虑多晶硅还原炉中辐射和对流热量传递形式,耦合频率控制的焦耳电加热方程,建立了12对棒多晶硅还原炉热场-电磁场耦合模型,并通过工业数据验证了其模拟结果的合理性.分析了硅棒半径、交流电频率以及反应器壁发射率对西门子还原炉内、外硅棒内部温度及电流密度分布的影响.结果表明:当硅棒半径增长到所用交流电频率引起的趋肤深度时,交流电趋肤效应开始显著影响硅棒内部温度梯度;交流电频率的增大,硅棒内部温度梯度逐渐减小;反应器壁发射率增加,低频时硅棒内部温差增大,而高频时发射率对硅棒内部温度分布影响不再显著.  相似文献   

10.
对大尺寸氢化物气相外延(HVPE)反应器的流场和温场进行二维数值模拟研究,旨在提高托盘表面温度和温度分布均匀性.基准模拟显示,靠近喷头的加热器对托盘温度的影响大于底部加热器,随着加热器功率增大,温度分布均匀性变差.在基准模拟的基础上,提出在反应器底部设置隔热钼屏的托盘升温方法.优化后的模拟显示,托盘温度升高约48 K,而温度均匀性变化不大.在使用4层钼屏的基础上,通过在石墨托盘内部开圆柱槽,显著提高了托盘温度分布均匀性,并使温度进一步提升约5K.  相似文献   

11.
采用有限元分析法系统地研究了大尺寸6H-SiC晶体PVT法生长装置中感应加热线圈的不同高度和匝间距对生长腔、粉源以及晶体生长温度场的影响;分析比较了线圈不同高度和匝间距时晶体生长面径向温度梯度的变化.结果表明:在中频电源的输出功率和频率固定,盲孔内径不变的情况下,通过调整线圈匝间距和高度可以减小晶体生长面径向温度梯度,改善晶体的质量,同时又有较高的生长速率.  相似文献   

12.
不同耦合间隙对大直径SiC晶体生长感应加热系统的影响   总被引:4,自引:3,他引:1  
本文采用有限元分析方法系统地研究了大尺寸SiC晶体PVT法生长装置中的加热组件不同的耦合间隙对生长系统中的感应磁场、感生电流和焦耳热的影响;分析比较了取不同的耦合间隙时系统达到热平衡状态所需时间的不同.得出了在中频电源的输出功率和频率都不变的前提下,在线圈匝数已固定的条件下,通过缩小耦合间隙可以提高系统的加热效率,缩短系统达到热平衡状态所需时间的结论.  相似文献   

13.
The influence of silica crucible reaction with graphite susceptor on carbon and oxygen impurities in multicrystalline silicon was studied by global numerical simulations. Results showed that the crucible reaction has a marked effect on carbon and oxygen impurities in the crystal. When the activity of carbon on the surface of the graphite susceptor increases, both oxygen and carbon impurities in the melt increase rapidly. Therefore, the production of high-purity multicrystalline silicon requires setting a free space between the silica crucible and the graphite susceptor or depositing a layer of SiC film on the surface of susceptor to prevent reaction between them.  相似文献   

14.
在氢化物气相外延(HVPE)生长GaN厚膜中,反应腔壁面总会产生大量的寄生沉积,严重影响薄膜生长速率及质量.本文针对自制的大尺寸垂直式HVPE反应器,通过数值模拟与实验对比,研究了反应腔壁面沉积以及GaN生长速率的分布规律,特别是寄生沉积分布与载气流量的关系.研究发现:在基准条件下,顶壁寄生沉积速率由中心向边缘逐渐降低,与实验结果吻合;侧壁沉积出现8个高寄生沉积区域,对应喷头边缘处排布的GaCl管,说明沉积主要取决于GaCl的浓度输运;模拟得出的石墨托表面生长速率低于实验速率,但趋势一致.保持其他条件不变,增大NH3管载气N2流量,顶壁和侧壁的寄生沉积速率及分布区域均随之增大,石墨托表面生长速率随之减小而均匀性却随之提高;增大GaCl管载气N2流量,顶壁和侧壁的寄生沉积速率及分布区域均随之减小,石墨托表面生长速率随之增大而均匀性却随之降低.研究结果为大尺寸HVPE反应器生长GaN的工艺优化提供了理论依据.  相似文献   

15.
Doped or undoped gallium nitride compounds (GaN/InGaN), usually grown by metal‐organic chemical vapor deposition (MOCVD) method, are at the heart of blue and green light emitting diodes (LEDs). Growth uniformities, such as the excited wavelength, luminous intensity and film thickness, critically influence their application in LED devices. In this paper, growth of GaN compounds in a MOCVD reactor, capable of a one‐time production of 36 × 2” wafers of nitrides, has been investigated. To examine growth uniformity across the wafer and from wafer to wafer, the reactor is divided into Zone A, Zone B and Zone C according to distance to the center of the graphite susceptor. Comparative analysis of each zone offers a straightforward view of the mean excitation wavelength, luminous intensity, film thickness and their standard deviations. Conformity of the growth uniformity in each zone is further checked comprehensively through averaging across‐wafer and wafer‐to‐wafer variables and their standard deviations. Zone B is found to retain excellent wavelength uniformity, since it is located at the middle of the susceptor with weaker effects of the susceptor edge and of the inlet gas flow. Zone A, at the center of the reactor, has the best mean intensity and thickness uniformities due to a well control of the infrared temperature measurement during the growth. And Zone C is worst in all uniformities and should be the main focus when optimizing the reactor. The above experimental analysis reveals the principles common to the MOCVD technique, and provides a basic for further optimization of the process window to improve the cycles with considerable reduction of the costs.  相似文献   

16.
The chemical vapor deposition of epitaxial layers of silicon is a widely used process in the electronic industry. It is a batch process and the relatively small capacity (i.e., 20–30 wafers) of epitaxial reactors significantly contributes to the expense of the process. We thus embarked on a research project aimed at a significant expansion of the reactor capacity. The first step was to conduct a complete characterization of the presently used reactors by means of flow visualization, temperature measurements and mass spectrometric studies; results of these studies will be briefly presented and discussed. The main conclusion from these studies was that up-scaling of present reactors is not economical. We thus designed and constructed a novel epitaxial reactor, radically different from current types. In this reactor the susceptor structure consists of parallel graphite discs. Wafers are fastened to one or both sides of these discs. The nutrient gaseous mixture is injected into spaces between discs by a specially designed gas distributor, which delivers the same amount of the mixture to all interdisc spacings, thus insuring the wafer-to-wafer thickness uniformity. A combination of the rotation of the susceptor discs with the gas distributor motion insures the on-the-wafer thickness uniformity. The above described parallel packing allows much higher reactor capacities (e.g., 50–100 wafers). It also results in a more economical reactor in terms of consumption of energy and chemicals. We shall illustrate the application of the novel reactor (known as the “RCA Rotary Disc Reactor”) to epitaxial deposition of silicon from SiCl2H2.  相似文献   

17.
The important point in controlling slip in silicon epitaxy is to avoid the build-up of mechanical stress that exceeds the critical value at which the stress is relieved by slip. This critical value depends on the slice perfection and, in particular, is lowered by the presence of local flows. On the other hand, the temperature gradient during the deposition process must be controlled in order to keep the mechanical stress below this critical value. The design of profiled susceptors, to achieve a constant temperature profile across the slice during epitaxy, has been studied. The size and the shape of the pockets are rather critical, and depend on the specific resistivity of the susceptor; the frequency of the rf heating system; the susceptor dimensions; and the slice parameters.  相似文献   

18.
Three‐dimensional models, coupling fluid flow and heat transfer, have been adopted to analyze influences of the process parameters on the temperature uniformity in an industrial MOCVD reactor. Important factors, such as the inlet gas flow, the susceptor rotation, the heater power, the distance between the heat shield and the susceptor (d1), as well as the distance between the heater and the susceptor (d2), have been investigated carefully. The system heating condition is characterized by temperature uniformity denoted as the standard deviation of temperature, and by thermal efficiency expressed as a combination parameter of the dissipated energy. The results reveal that decrease of the gas flow and the rotation rate, as well as increase of the distance d1, could monotonically enhance the temperature uniformity. The results also show that decrease of the above three parameters could improve the thermal efficiency. Furthermore, increase of the distance d2 enhances the temperature uniformity, and reduces the thermal efficiency slightly. The influences of the parameters on the uniformity vary at the different locations of the susceptor as divided into Zone A, Zone B and Zone C. The conclusions help the growth engineer optimize the system design and process conditions of the reactor.  相似文献   

19.
A novel horizontal metal organic vapor phase epitaxy (MOVPE) system, which is capable of handling six 3 inch wafers or eighteen 2 inch wafers mounted on a 10 inch diameter susceptor, has been developed for the growth of III–V compound semiconductors. The characteristic features in this system are “triple flow channel” gas injection and “face-down” wafer setting configuration. The inlet for the source gas flow is divided into three zones (upper, middle and lower flows for hydrides, organometals and hydrogen, respectively) to control the concentration boundary layer and the growth area. The wafers are placed inversely to prevent thermal convection and particles on the growing surface. The independent controlled three-part heating system is also adopted to achieve a uniform temperature distribution over an 8 inch growing surface. The thickness and the doping of GaAs, Al0.3Ga0.7As, In0.48Ga0.52P and In0.2Ga0.8As grown by this system are uniform within ± 2% over all 3 inch wafers.  相似文献   

20.
An improved detailed model for the calculation of the temperature distribution in a multiwafer Planetary Reactor™ has been developed. The temperature field of the reactor has been calculated in dependence of the reactor parameters for (Al,Ga)As growth as well as on the kind and the thickness of the wall and susceptor deposits. The amount of parasitic wall deposits can be minimized by a proper tuning of the reactor temperature distribution. Calculated GaAs growth rate profiles on 3 inch wafers show a strong dependence on the temperature field in the reactor and the amount of parasitic deposits. These predicted relationships have been used to optimize the reactor temperature distribution in order to minimize parasitic wall depositions. By this procedure a growth rate uniformity of < 1% on 3 inch wafers can be reproducibly achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号