首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.  相似文献   

2.
The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach.  相似文献   

3.
Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient. This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea, implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.  相似文献   

4.
袁驷  邢沁妍 《计算力学学报》2016,33(4):451-453,477
一维Ritz有限元后处理超收敛计算的EEP(单元能量投影)法简约格式中,若问题和解答足够光滑,其m(1)次单元的超收敛位移解在单元内任一点均可以达到至少hm+2的超收敛阶。对此,本文提出一套全新的推证方法,通过对单元能量投影的等效变形,直接推导出EEP简约格式位移解的计算公式及其误差项,进而采用更为简单通用的数学证明方法,证明了这一超收敛性。  相似文献   

5.
将一维Ritz有限元法超收敛计算的EEP(单元能量投影)法推广到二阶非自伴常微分方程两点边值问题Galerkin有限元法的超收敛计算。在对精确单元的研究中,发现与Ritz有限元法不同,只要检验函数采用伴随算子方程的解,无论试函数取何形式,在结点处都可得到精确的解函数值。对近似单元的研究表明,EEP法同样适用于Galerkin有限元法,不仅保留了简便易行、行之有效、效果显著的特点,同时也保留了EEP法的特有优点,如:任一点的导数和解函数的误差与结点值的误差具有相同的收敛阶。  相似文献   

6.
The newly proposed element energy projection (EEP) method has been applied to the computation of super-convergent nodal stresses of Timoshenko beam elements. Generalformul as based on element projection theorem were derived and illustrative numerical examples using two typical elements were given. Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions. The EEP method gives super-convergent nodal stresses, which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude. And in addition, it can overcome the “ shear locking“ difficulty for stresses even when the displacements are badly affected. This research paves the way for application of the EEP method to general onedimensional systems of ordinary differential equations.  相似文献   

7.
将重构核粒子边界无单元法(RKP-BEFM)与有限元法(FEM)耦合,形成求解具有区域特征的弹性力学问题的重构核粒子边界无单元与有限元的耦合方法RKP-BEF/FE.推导了重构核粒子边界无单元与有限元耦合方法的离散化公式,建立了节点未知量的耦合方程.重构核粒子边界无单元法和有限单元法的较高精度保证了这一直接耦合方法的成功实现与求解精度.最后给出了平面问题的数值算例,验证了提出的耦合方法RKP-BEF/FE的有效性.  相似文献   

8.
Both the orthotropy and the stress concentration are common issues in modern structural engineering. This paper introduces the boundary element method (BEM) into the elastic and elastoplastic analyses for 2D orthotropic media with stress concentration. The discretized boundary element formulations are established, and the stress formulae as well as the fundamental solutions are derived in matrix notations. The numerical procedures are proposed to analyze both elastic and elastoplastic problems of 2D orthotropic media with stress concentration. To obtain more precise stress values with fewer elements, the quadratic isoparametric element formulation is adopted in the boundary discretization and numerical procedures. Numerical examples show that there are significant stress concentrations and different elastoplastic behaviors in some orthotropic media, and some of the computational results are compared with other solutions. Good agreements are also observed, which demonstrates the efficiency and reliability of the present BEM in the stress concentration analysis for orthotropic media. The project supported by the Basic Research Foundation of Tsinghua University, the National Foundation for Excellent Doctoral Thesis (200025) and the National Natural Science Foundation of China (19902007). The English text was polished by Keren Wang.  相似文献   

9.
平面广义四节点等参元GQ4及其性能探讨   总被引:3,自引:0,他引:3  
栾茂田  田荣  杨庆 《力学学报》2002,34(4):578-585
广义节点有限元是将传统有限元方法中的节点广义化,在不增加节点个数的前提下,仅通过提高广义节点的插值函数的阶次,从而达到提高有限元解精度的目的.与现有的p型和hp型有限元不同,在这种新的有限元中,节点自由度全部定义在节点处,在理论与程序实现上与传统有限元方法具有很好的相容性,传统有限元方法是这种新方法的广义节点退化为0阶时的特殊情形.文中主要讨论了这一新方法的四节点等参元(记为GQ4)的形式.对GQ4进行的各种数值试验表明,所发展的广义四节点等参单元具有精度高且无剪切自锁与体积自锁等的特点.  相似文献   

10.
章青  郁杨天  顾鑫 《计算力学学报》2016,33(4):441-448,450
综述了近场动力学与有限元混合建模方法的研究进展,阐明了各种混合建模方法的基本原理与特点,并重点介绍本课题组在近场动力学与有限元方法混合建模方面的研究工作。现有近场动力学与有限元混合建模方法包括位移协调约束、力耦合、混合函数方法以及子模型方法等,除子模型方法外,都可归结为并行式多尺度分析方法,其基本思想是将计算结构划分为近场动力学子域、有限元子域以及两者的交界区域(或重叠区域、或界面单元、或过渡区域)。子模型方法可归结为显-显分析方法,先采用显式有限元进行整体分析,后采用近场动力学方法对重点区域进行分析。混合建模方法需要着重提高交界区域的计算精度,并且消除虚假力和虚假应力波问题。提出了通过力耦合的近场动力学与有限元混合建模的隐式分析方法,该方法不再设置重叠区,通过杆单元连接近场动力学子域与有限元子域,其中界面上的有限元结点不仅与其所在单元的其他结点发生作用,还通过杆单元与以其为圆心、一定半径的圆域内的其他物质点相互作用。研究表明,本文提出的混合模型和求解方法既能有效解决裂纹扩展等不连续问题,又可提高计算效率,为工程结构破坏问题的计算分析提供一种有效方法。  相似文献   

11.
正今年是钱令希院士诞辰100周年,带着崇敬的心情我们缅怀先生的一生。作为一名杰出的科学家,除了在很多研究工作中取得优秀的成果,钱令希先生的战略眼光更值得我们学习。1950年钱令希先生在中国科学杂志发表《余能理论》[1]。论文中钱令希先生引用了Westergaard 1941年关于余能原理的论文,特别引用了Westergaard的观点,认为余能方法没有受到与其价  相似文献   

12.

A new type of Galerkin finite element for first-order initial-value problems (IVPs) is proposed. Both the trial and test functions employ the same m-degreed polynomials. The adjoint equation is used to eliminate one degree of freedom (DOF) from the test function, and then the so-called condensed test function and its consequent condensed Galerkin element are constructed. It is mathematically proved and numerically verified that the condensed element produces the super-convergent nodal solutions of O(h2m+2), which is equivalent to the order of accuracy by the conventional element of degree m + 1. Some related properties are addressed, and typical numerical examples of both linear and nonlinear IVPs of both a single equation and a system of equations are presented to show the validity and effectiveness of the proposed element.

  相似文献   

13.
The reduced-order finite element method (FEM) based on a proper orthogonal decomposition (POD) theory is applied to the time fractional Tricomi-type equation. The present method is an improvement on the general FEM. It can significantly save memory space and effectively relieve the computing load due to its reconstruction of POD basis functions. Furthermore, the reduced-order finite element (FE) scheme is shown to be unconditionally stable, and error estimation is derived in detail. Two numerical examples are presented to show the feasibility and effectiveness of the method for time fractional differential equations (FDEs).  相似文献   

14.
A vertex‐centred finite‐volume/finite‐element method (FV/FEM) is developed for solving 2‐D shallow water equations (SWEs) with source terms written in a surface elevation splitting form, which balances the flux gradients and source terms. The method is implemented on unstructured grids and the numerical scheme is based on a second‐order MUSCL‐like upwind Godunov FV discretization for inviscid fluxes and a classical Galerkin FE discretization for the viscous gradients and source terms. The main advantages are: (1) the discretization of SWE written in surface elevation splitting form satisfies the exact conservation property (??‐Property) naturally; (2) the simple centred‐type discretization can be used for the source terms; (3) the method is suitable for both steady and unsteady shallow water problems; and (4) complex topography can be handled based on unstructured grids. The accuracy of the method was verified for both steady and unsteady problems, including discontinuous cases. The results indicate that the new method is accurate, simple, and robust. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A method is presented to discretize inclined non‐planar 2D fractures within a 3D finite element grid for subsurface flow and transport simulations. Each 2D fracture is represented as a triangulated surface. Each triangle is then discretized by 2D fracture elements that can be horizontal, vertical or inclined and that can be triangular or rectangular. The 3D grid representing a porous rock formation consists of hexahedra and can be irregular to allow grid refinement. An inclined fracture was discretized by (a) inclined triangles and (b) orthogonal rectangles and flow/transport simulations were run to compare the results. The comparison showed that (i) inclined fracture elements must be used to simulate 2D transient flow, (ii) results of 2D/3D steady‐state and 3D transient flow simulations are identical for both discretization methods, (iii) inclined fracture elements must be used to simulate 2D/3D transport because orthogonal fracture elements significantly underestimate concentrations, and (iv) orthogonal elements can be used to simulate 2D/3D transport if fracture permeability is corrected and multiplied by the ratio of fracture surface areas (orthogonal to inclined). Groundwater flow at a potential site for long‐term disposal of spent nuclear fuel was simulated where a complex 3D fracture network was discretized with this technique. The large‐scale simulation demonstrates that the proposed discretization procedure offers new possibilities to simulate flow and transport in complex 3D fracture networks. The new procedure has the further advantage that the same grid can be used for different realizations of a fracture network model with no need to regenerate the grid. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
This paper develops a precise discretized algorithm in the time domain solving hyperbolic and parabolic heat conduction problems with radiative boundary condition. By expanding variables at a discretized time interval, FEM based recurrent formulae are derived, by virtue of which, a self-adaptive computing procedure, without requirement of iteration for the non-linear solutions, can be carried out for different sizes of time steps. Numerical validation gives satisfactory results.  相似文献   

17.
吴国荣  钟伟芳 《力学学报》2004,36(1):101-105
应用分形有限元方法结合边界元方法研究了二维含裂纹结构和声耦合问题.采用二级分形有限元方法对含裂纹的弹性结构体进行离散处理,这样可以使得自由度数大大地减少;无限大外域声场的计算使用边界元方法,可以自动满足无穷远辐射条件.数值仿真算例结果表明:结构声耦合系统的共振频率随着裂纹深度的增加而下降;裂纹附近的声场所受的影响较为明显.  相似文献   

18.
In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. Therefore with the parameters of a given FGM plate, problems of FGM plate under various conditions can be solved. The approach uses 1D discretization to obtain 3D solutions, which is proven to be an effective numerical method for the mechanical analyses of FGM structures. Examples of FGM plates with complex shapes and various holes are presented.  相似文献   

19.
建立了加锚体的自然单元法分析模型。结合自然相邻插值和一维轴力杆单元的劲度矩阵,推导了锚杆支护数值模拟的单元列式,给出了自然单元法分析加锚体的实施步骤和主要程序设计。结构的离散和锚杆的离散完全独立,因此可以自由地加设或拆除锚杆。算例分析表明自然单元法分析加锚体的精度与有限元的相当,但比有限元的实施要方便得多。  相似文献   

20.
Transient heat conduction problems are normally simulated by the conventional consistent and lumped finite element methods. The discretization error and the physical reality violation in such problems are noticeable and unwanted responses are observed in the results when using the consistent formulations. Although in utilizing the lumped formulations, the violation of physical reality becomes reduced; however, emerging the discretization error would also become obvious to the degree of being quantifiable. In using the inverse finite element method without considering the element shape functions, the element matrices will be obtained by minimizing the governing equation and its generalized discretized corresponding formula. The results obtained by using this method indicates that the reduction in both the discretization error as well as the violation of physical reality would be realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号