首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
旋转IMU在光纤捷联航姿系统中的应用   总被引:7,自引:1,他引:7  
惯性测量单元输出信号的精度直接影响捷联惯性导航系统的精度,为了提高捷联系统的精度,以舰船光纤捷联惯性航姿系统为应用对象,采用了双轴旋转机构连续匀速旋转IMU的系统方法,把惯性测量单元输出信号中的漂移误差调制成正弦信号,通过捷联算法中的积分运算可以有效地消除陀螺和加速度计中的漂移误差,从而有效地提高捷联惯性航姿系统的精度,并进行了系统仿真实验。仿真结果表明:经过旋转以后的IMU输出信号误差较传统非旋转方法可以减小一个数量级。基于双轴旋转IMU的系统方法可以有效地减小IMU输出信号漂移误差和提高捷联惯性航姿系统的精度。  相似文献   

2.
针对光纤陀螺仪及捷联系统的特点,研究并实现了一种基于光纤陀螺仪的捷联航姿基准系统。以PC/104作为导航计算机,采用I/F转换回路及计数线路构成加速度计的数字信号采集系统,采用智能多串口线路完成各模块之间的通讯任务,构成捷联式航姿基准系统原理样机。在此基础上,设计了系统的机械编排方案、传感器的误差补偿方案和闭环卡尔曼滤波器。样机的测试结果表明:样机满足系统设计要求,在温控环境中,其精度优于基于挠性陀螺仪的捷联航姿系统。  相似文献   

3.
基于卡尔曼滤波器的数字式捷联航姿系统算法设计   总被引:1,自引:0,他引:1  
提出了一种基于卡尔曼滤波器的捷联航姿算法,利用加速度及磁航向作为观测量,结合四元数微分方程,采用信息融合手段对姿态信息及陀螺漂移进行修正.半实物仿真结果证明,该算法合理可行,达到了预期效果,为新型数字捷联式航姿系统研发奠定了基础.  相似文献   

4.
旋转式光学陀螺捷联惯导系统的旋转方案设计   总被引:10,自引:3,他引:7  
在光学陀螺捷联式惯性系统中,利用系统旋转补偿技术可对陀螺组件和加速度计组件的输出误差进行调制,从而抑制系统的误差发散,提高导舷精度.通过分析惯性测量组件的误差模型和旋转式捷联系统误差传播方程,解释了旋转误差补偿的机理.针对惯性测量组件输出误差的特性,设计单轴正反转停和双轴转位的系统旋转方案.在摇摆状态下分别对无旋转、单轴和双轴三种方案进行长时间导航仿真,对旋转补偿误差的能力进行了比较.结果表明:旋转能够抑制长期的定位误差发散,在角运动状态下旋转系统能比无旋转系统保持更好的姿态精度.  相似文献   

5.
模糊推理在捷联航姿系统中的应用   总被引:2,自引:0,他引:2  
为了减小捷联航姿系统航姿解算过程中陀螺漂移和积分过程等因素对航姿精度的影响,结合各传感器输出与载体运动状态相关的特性,提出了一种基于模糊推理的IMU(惯性测量组件)/磁传感器信息融合方法.通过模糊推理系统判断出载体当前的运动状态,在准静态下对IMU中陀螺解算的姿态信息和加表解算的姿态信息进行融合可提高载体的姿态精度,对陀螺解算的航向信息和准静态下磁罗经提供的航向信息进行融合可提高载体的航向精度.经过跑车试验且与跑车过程中作为基准的光纤/GPS航姿系统的航姿结果进行比较,验证了该推理过程和融合算法的正确性.  相似文献   

6.
基于低成本IMU的捷联航姿系统软件设计与实现   总被引:1,自引:0,他引:1  
在已设计好的捷联航姿系统硬件平台基础上,集传感器信息处理模块、航姿解算模块和信息融合模块于一体,综合设计了基于低成本IMU的捷联航姿系统软件算法.特别是在信息融合模块中采用了基于模糊推理的变加权系数多传感器信息融合算法,从而实现对惯性数据的融合,减小了系统随时间积累的航姿误差,保证航姿系统的精度指标满足要求(静态航姿精度±1.0°,动态航姿精度±2.5°).软件算法的验证采用低成本MT9-B惯性测量组件的实测数据分别进行了静、动态实验.实验结果表明,所设计的软件算法可时实进行低成本陀螺的零偏估计与补偿,并能准确地进行多传感器信息融合,从而能够有效地提高系统的航姿精度.  相似文献   

7.
光纤陀螺捷联式惯性系统的研究与设计   总被引:3,自引:4,他引:3  
介绍了基于光纤陀螺的捷联式惯性系统的总体设计,设计了加速度计再平衡回路数字读出电路及光纤陀螺信号输出电路。采用PC104工控机作为导航计算机,构成捷联式惯性系统原理样机。在此基础上,设计了系统的误差补偿方案、初始对准方案和机械编排方案。样机的初步测试结果表明:该样机达到了设计指标要求(航向精度:<1°;水平姿态精度:<0.5°)。  相似文献   

8.
提出了一种捷联式惯性测量单元的设计与实现方法。该系统以开环光纤陀螺和硅微加速度计作为惯性敏感元件,采用高速DSP作为中央处理器实现数据采集、处理及输出。重点介绍了系统的数据采集模块、处理模块、通讯模块等硬件电路及相应软件的设计。系统通过转台实验进行了离线标定及在线补偿,测试结果表明:系统在功能、精度以及实时性等方面达到了预期的设计目标。  相似文献   

9.
本文提出了在三轴转台上用双轴速率输入法来估计捷联惯导加速度计动态误差模型参数的方法。该方法基本解决了加速度计动态误差的标定问题,同时也容易实现试验计划的优化设计,以提高模型参数辨识精度。所做工作对于提高捷联惯性导航系统精度、丰富惯性器件测试理论及开发三轴转台的使用功能均有一定意义。  相似文献   

10.
静电陀螺捷联系统姿态初始对准研究   总被引:1,自引:0,他引:1  
静电陀螺是构成捷联系统的理想惯性元件。与速率陀螺相比,静电陀螺捷联系统姿态初始对准有其相应的特点,通过陀螺传感器敏感转子极轴与壳体座标系之间的方向余弦和加速度计的输出信息获取载体的姿态角。由于极轴在惯性空间稳定的特点使静电陀螺捷联系统在姿态初始对准时可应用天文导航原理。基于此,本文用天文导航算法对静电陀螺捷联系统姿态初始对准原理进行了探讨,并分析了陀螺漂移、陀螺传感器测角误差和加速度计观测误差对姿态初始对准精度的影响。所得结论对静电陀螺捷联系统的理论和应用研究有参考意义。  相似文献   

11.
角速率输入下的航姿算法研究   总被引:13,自引:3,他引:10  
在某些航姿系统中,陀螺采用角速率信号输出,针对这种情况,作推导了几种航姿算法的圆锥运动误差表达式,并且在理论上比较了它们的误差。理论推导和随后的仿真都证明四元数航姿算法较为适合角速率信号输入。  相似文献   

12.
针对激光陀螺具有标度因数稳定、漂移误差变化小的特点,建立了适合激光陀螺捷联惯导系统的陀螺及加速度计组件简化误差参数模型,推导出了适合激光陀螺捷联惯导系统外场快速自标定的误差模型,设计了激光陀螺捷联惯导系统9位置系统级标定方法,并通过试验验证了该方法可快速准确的标定出加速度计组件的标度因数、安装误差、零偏及激光陀螺安装误差等15个主要参数,方法简单易行。  相似文献   

13.
旋转式捷联惯导系统精对准方法   总被引:4,自引:0,他引:4  
针对静基座捷联惯导系统初始对准时可观测性差的缺点,提出了捷联式惯导系统四位置转停的单轴旋转方案,以及在此方案下的精对准方法。将陀螺常值漂移和加速度计零位误差调制成周期变量,通过改变惯导系统误差模型中的捷联矩阵改善系统的可观测性。为了使捷联惯导系统的误差方程适合卡尔曼滤波模型,将加速度计误差和陀螺漂移扩充为状态变量,采用卡尔曼滤波方法实现旋转式捷联惯导系统的精对准。仿真结果表明,IMU旋转状态下的对准方法大大提高了系统失准角的可观测性,从而提高了对准精度。  相似文献   

14.
捷联陀螺角加速度误差系数在三轴转台上的实验标定   总被引:1,自引:0,他引:1  
本文提出了在三轴转台上用双轴和三轴速率输入法来标定捷联陀螺的角加速度误差系数。该方法充分利用了三轴转台的速率功能来激励陀螺的角加速度误差项,从而标定出相应的角加速度误差系数,为解决在缺乏角振动台的实验条件下陀螺的动态误差模型标定问题提供了一条有效途径。  相似文献   

15.
针对光纤陀螺捷联惯性航姿系统对通讯实时性、可靠性和抗干扰要求高的特点,基于独立的CAN控制器SJA1000设计了光纤航姿系统CAN总线通讯节点,提出了CAN总线软硬件设计方案,解决了CAN控制器与系统主处理器地址和数据线分离之间所存在的问题.与传统的RS232/422/485、1553B等相比,采用CAN总线有助于将航姿系统、控制设备、测试设备、各种传感器及载体其它电子设备,通过CAN总线互连,构成一个高速、可靠、廉价的现场总线控制系统.考到虑航姿系统的特殊应用背景,制定了CAN应用层协议.实验及实际应用表明,该航姿系统通讯实时性、可靠性好,抗干扰能力强.  相似文献   

16.
采用冗余传感器的捷联惯性测量组合能有效提高可靠性,并为降低测量误差和提高导航性能提供必要条件,但同时对标定提出了新问题。给出了一种具有斜置陀螺和加速度计的光纤陀螺捷联惯组标定方法。首先利用陀螺(加速度计)特性:只响应角速率(加速度)在其输入轴方向的投影分量,推导了该传感器输入轴方向的方向余弦与其安装方式的对应关系,建立了组合误差模型。用最优估计理论推导模型参数解算方法,同时考虑了地球转速及重力加速度对标定过程的影响;整个试验过程不增加标定工作量,无需北向基准。试验证明,该方法是一种高精度的工程实用标定方法,由交耦系数换算后的安装误差角符合实际情况,陀螺和加速度计的斜轴综合测量误差分别不大于0.140(°)/h和6.442E-5g。  相似文献   

17.
一种车辆航位推算改进方法   总被引:4,自引:1,他引:3  
针对车辆导航的特点,给出了一种基于单陀螺单加速度计的简化航位推算方案,同时研究了差速里程仪导航方案存在的问题,提出了基于单陀螺单里程仪的航位推算方案.该方案可以充分发挥陀螺短时精度高,里程仪测量误差随着时间增长变化较小(特别是在车辆低速行驶时)的优点,并对这几种航位推算方案进行了仿真研究.仿真结果表明:单陀螺单里程仪航位推算方案的航向精度和位置精度都是较高的.  相似文献   

18.
HJL-1捷联惯性航姿系统的工程实现   总被引:3,自引:0,他引:3  
捷联惯性航姿系统是一类低成本的惯性导航系统,它主要用于输出三维姿态,并能直接输出与载体坐标系一致的三轴角速率和线加速度,便于自动驾驶仪和制导系统应用。本文以实际研制的HJL-1捷联惯性航姿系统为例,讨论了整体系统组成原理,导航算法的实现,包括四元数姿态方程、修正方式、初始对准以及计时中断的实现等;文中还介绍了由C语言编制的导航软件结构和CSDB通讯的处理思想;最后给出了工程样机实验情况的说明。  相似文献   

19.
陀螺作为捷联惯性导航系统的关键传感器,其测量精度直接决定了整个系统的性能和精度指标。针对舰船高过载环境下捷联惯性导航系统陀螺输出信号出现畸变的问题,提出一种基于BP神经网络技术的陀螺信号智能模拟滤波方法。该方法根据系统加速度计输出值对舰船运动状态进行判断,当其输出小于设定阈值时,视为非过载环境,此时将陀螺输出用于导航计算并作为BP神经网络在线训练样本,以保证网络参数与当前舰船运动态势的一致性;否则视为进入高过载环境,并利用之前最新训练好的BP神经网络模拟当前陀螺信号输出,保证捷联惯性系统的平稳工作。采用智能模拟的优点是:数据并行计算速度快,不需要改变系统硬件条件。半物理仿真试验结果表明:该方法在加速度计输出为550g的高过载环境下,可有效改善陀螺输出信号出现畸变的问题,实现舰船运动状态的实时模拟。  相似文献   

20.
为降低捷联惯导系统标定对转台精度的要求,提出了一种利用低精度双轴转台对捷联惯导进行系统级标定的10位置标定方法。通过选取恰当的惯性组件坐标系,建立加速度计和陀螺仪的输出误差模型,在双轴转台上合理进行10位置编排,然后利用系统翻滚过程中的导航误差作为观测量,全面辨识出包括加速度计标度因数非线性项的24个系统误差系数。通过数学仿真和实物试验两方面验证,该方法可在低精度双轴转台上全面辨识出系统误差系数,精度同在精密转台上使用传统方法标定精度相当,且标定时间短,方法简单易行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号