首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
软物质等大变形材料是近年来力学与材料科学关注的热点问题,与之相关的实验研究也引起格外关注.本文将数字云纹实验技术应用于大变形材料力学实验,研究了软材料大变形场的实验测量与表征技术;以仿生皮肤材料缝线力学的应用为例进行实验分析,通过坐标变换给出集中力作用下的大变形材料径向变形场ur和环向变形场uθ的全场分布,并研究了缝线针口附近区域的变形场分布.分析结果表明,大变形材料的变形场存在明显的扇区变形特征.本文还进一步讨论了两种不同缝合方式下针口周边区域的力学变形特征,并初步分析了不同缝合方式对切口愈合产生的影响.  相似文献   

2.
采用数字云纹技术对橡胶类材料的大变形断裂力学问题进行了实验分析.提出了数字圆环栅和射线栅技术,给出了该技术的测量原理和方法.应用此技术对橡胶薄板材料的I型断裂的裂尖变形场进行了测量,给出了极坐标系下的实验径向位移场ur和环向位移场uθ的分布图,对实验结果进行了详细的分析,并结合大变形断裂的分区理论模型进行了比较与讨论.  相似文献   

3.
李晓雷  亢一澜  刘波  肖霞 《实验力学》2007,22(3):191-197
采用数字云纹技术对橡胶类材料的大变形断裂力学问题进行了实验分析。提出了数字圆环栅和射线栅技术,给出了该技术的测量原理和方法。应用此技术对橡胶薄板材料的I型断裂的裂尖变形场进行了测量,给出了极坐标系下的实验径向位移场ur,和环向位移场uθ。的分布图,对实验结果进行了详细的分析,并结合大变形断裂的分区理论模型进行了比较与讨论。  相似文献   

4.
利用一种新的橡胶材料应变能函数,对橡胶楔体与刚性缺口接触大变形问题进行了分析。得到了接触尖点附近变形的奇异性特征,给出了奇异性指数与材料常数、橡胶楔体角度、刚性缺口角度之间的关系式。同时编制了大变形有限元程序,计算得到了与理论解一致的结论。  相似文献   

5.
热电材料可以将热能转化为电能,反之亦然,这一优良的性质将有助于研发更具成本效益的设备和器件。本文研究了刚性圆形压头作用在热电材料半平面的无摩擦接触问题。假定压头为电导体、热导体,且压头压入深度及与材料的接触区域宽度未知。首先求解电场和温度场,利用傅里叶变换得到了电势函数、温度、电流密度和能量通量的解析表达式。然后求解弹性场,利用积分变换和边界条件,将该热弹性接触问题转化为第一类奇异积分方程并数值求解。数值结果讨论了压头半径和热电载荷对法向接触应力、电流强度因子和能量通量强度因子的影响。结果表明,对于圆压头,热电材料的法向电流密度、法向能量通量在接触边缘表现出奇异性,而表面法向接触应力在接触边缘为零。本文建立的研究模型有助于更深层次的了解热电材料的接触行为。  相似文献   

6.
王旭  张俊乾  郭兴明 《力学学报》2005,37(2):169-174
采用复变函数法探讨了在一个刚性压头作用下十次对称二维准晶材料的两类接触问题,即具有有限摩擦的接触问题以及粘结接触问题.特别地对于平底压头,获得了表征声子场和相位子场的全纯函数的显式表达式,以及在压头上的接触应力分布.结果显示,对于具有有限摩擦的接触问题,接触应力在接触区边缘具有实指数奇异性-1/2±β,其中β由准晶体的材料常数及静摩擦系数确定;而对于粘结接触问题,接触应力在接触区边缘具有振荡型奇异性-1/2±iε,其中ε由准晶体的材料常数确定.  相似文献   

7.
功能梯度材料涂层半空间的轴对称光滑接触问题   总被引:2,自引:0,他引:2  
求解了功能梯度材料涂层半空间的轴对称光滑接触问题,其中梯度层剪切模量按照线性变化,利用Hankel积分变换方法求解微分方程,将问题化为具有Cauchy型奇异核的积分方程.数值方法求解表明:功能梯度材料涂层半空间在刚性柱形压头和球形压头作用下,接触表面分布应力,接触半径以及最大压痕受材料梯度效应的影响较大.  相似文献   

8.
利用平面弹性复变方法,通过求解边值问题,研究了单个刚性压头作用在带任意形状裂纹的三维二十面体准晶下的无摩擦接触问题,求得了应力函数封闭解的表达式,同时得到了裂纹左右端点处应力强度因子和压头下方任意点处声子场接触应力的显式表达式。理论结果表明,声子场接触应力在压头边缘具有-1/2阶奇异性。如果忽略相位子场作用,本文得到的结果可退化为已有文献中弹性材料相应结论。数值结果用于分析带水平直裂纹三维二十面体准晶下半平面与单个平底刚性压头无摩擦接触时量纲为一的应力强度因子和量纲为一的接触应力的分布规律;量纲为一的应力强度因子在裂纹距边界垂直距离和压头半宽度之比约为0.3和1.5处取得最大值;量纲为一的接触应力呈对称分布,在压头中心处最小,在压头边缘处达到峰值且具有奇异性;相位子场弹性常数、耦合系数与Lamé常数的比值对量纲为一的声子场接触应力的大小和分布规律几乎无影响。  相似文献   

9.
十二次对称二维准晶中的无摩擦接触问题   总被引:1,自引:0,他引:1  
利用积分变换的方法讨论了在一个刚性压头作用下十二次对称二维准晶的无摩擦接触问题. 通过引入位移势函数,将数量巨大而复杂的偏微分方程转化为两个独立的双调和方程,应用Fourier分析与对偶积分方程理论解决了十二次对称二维准晶材料的无摩擦接触问题,得到了相应的接触应力解析表达式,结果表明:如果接触位移是一常数,则接触应力在接触区域边缘具有-1/2阶奇异性;反之,如果接触应力在接触区域边缘具有-1/2阶的奇异性,则接触位移一定为一常数,这为准晶材料的接触变形提供了重要的力学参数.  相似文献   

10.
一种新的橡胶材料弹性本构模型   总被引:1,自引:0,他引:1  
魏志刚  陈海波 《力学学报》2019,51(2):473-483
橡胶类材料本构关系对于科学研究和工程应用具有重要意义,但已有的橡胶模型的拟合能力和可靠性需要进一步提高.为解决此问题,本文提出了一种新的橡胶材料的各向同性、不可压缩柯西弹性模型.研究了橡胶材料本构关系的模型形式,基于平面应力变形状态,提出了一种以较大的两个伸长率为自变量、适用于一般变形状态的橡胶材料弹性本构模型形式;研究了橡胶材料在侧面受约束条件下的变形规律,分析了橡胶材料本构关系需要满足的约束条件;在此基础上,结合一个可以通过实验确定的描述平面拉伸变形状态下的橡胶材料力学特性函数,提出一种将该函数拓展为平面应力状态一般模型的方法,并给出了一个具体的函数形式,形成了一个新的不可压缩、各向同性的橡胶材料弹性本构模型.使用5组包含3种类型实验的数据和一组较全面的双轴测试数据对该模型进行了参数拟合,结果表明:该模型具有很好的拟合精度和更高的可靠性,仅用一种类型实验数据,如单轴拉伸或者平面拉伸等,也能获得较好的拟合结果.   相似文献   

11.
A new experimental method has been developed for studying deformations of micromechanical material systems at the submicron scale. To that end, a special digital scanning tunneling microscope (STM) was designed to be coupled to a mechanically deforming specimen. Operating in constant current mode, this digitally controlled STM records detailed topographies of specimen surfaces with a resolution of 10 nm in-plane and 7 nm out-of-plane over a 10 μ × 10 μ area. Three-dimensional displacement field information is extracted by comparing topographies of the same specimen area before and after deformation by way of a modified digital image correlation algorithm. The resolution of this (combined) displacement measuring method was assessed on translation and uniaxial tensile tests to be 5 nm for in-plane displacement components and 1.5 nm for out-of-plane motion over the same area. This is the first paper in a series of three in which the authors delineate the main features of this specially designed microscope and describe how it is constituted, calibrated and used with the improved version of the digital image correlation method to determine deformations in a test specimen at the nanoscale.  相似文献   

12.
Effects of magnetic field on fracture toughness of soft ferromagnetic materials were studied using experimental techniques and theoretical models. The manganese–zinc ferrite with a single-edge-notch-beam (SENB) were chosen to be the specimen and the Vickers’ indentation specimen subjected to a magnetic field were chosen to be the specimens. Results indicate that there is no significant variations of the measured fracture toughness of the manganese–zinc ferrite ceramic in the presence of the magnetic field. The theoretical model involves an anti-plane shear crack with finite length in an infinite magnetostrictive body where an in-plane magnetic field prevails at infinity. Magnetoelasticity is used. The crack-tip elastic field is different from that of the classical mode III fracture problem. Furthermore, the magnetoelastic fracture of the soft ferromagnetic material was studied by solving the stress field for a soft ferromagnetic plane with a center-through elliptical crack. The stress field at the tip of a slender elliptical crack is obtained for which only external magnetic field normal to the major axis of the ellipse is applied at infinity. The results indicate that the near field stresses are governed by the magnetostriction and permeability of the soft ferromagnetic material. The induction magnetostrictive modulus is a key parameter for finding whether magnetostriction or magnetic-force-induced deformation is dominant near the front an elliptically-shaped crack. The influence of the magnetic field on the apparent toughness of a soft ferromagnetic material with a crack-like flaw can be regarded approximately in two ways: one possesses a large induction magnetostrictive modulus and the other has a small modulus. Finally, a small-scale magnetic-yielding model was developed on the basis of linear magnetization to interpret the experimental results related to the fracture of the manganese–zinc ferrite ceramics under magnetic field. Studied also is the fracture test of the soft ferromagnetic steel with compact tension specimens published in the existing literature.  相似文献   

13.
This paper presents the experimental characterization of the in-plane deformation field at any depth within a granular support medium (GSM) called Carbomer 940 using digital image correlation (DIC) and particle image velocimetry (PIV). A method was developed to produce a 2D plane of randomly shaped speckles within the GSM for DIC. Four different needle diameters and four different speeds were used as test specimens representative of those utilized for 3D printing of soft matter in the GSM. The results can be used to determine dimensional tolerances and assessing interactions between multiple injection needles and acceptable spacing. The displacements in the direction of needle motion (u) and transverse (v) were obtained. Subsequently, the magnitudes were determined as a function of distance from the needle path and time history. Results show that near the needle there is a region of yielded/fluidized material and away from the needle path the material acts like a viscoelastic solid. Permanent deformation decreases with increased distance from the path and recovery is enhanced by reversing back through the path.  相似文献   

14.
The paper aimed to study the effect of large deformation and material nonlinearity on the adhesive contact between a smooth rigid spherical indenter and a Neo-Hookean layer of finite thickness, for the cases of the layer thickness/indenter radius ratio between 1 and 2. Our analysis was based on the large-deformation JKR (LDJKR) theory, which models the adhesive contact of two elastic solids in large-deformation regime by knowing the solution of the corresponding non-adhesive contact problem. In this paper, the non-adhesive contact between a spherical indenter and a Neo-Hookean layer was solved by finite element analysis. Combined these numerical results and the LDJKR theory, approximate analytic expressions of the applied load and displacement of adhesive contact of Neo-Hookean layers were obtained. The effects of layer thickness were also discussed.  相似文献   

15.
An experimental scheme of digital speckle pattern interferometry using two electromagnetic shutters and a three-frame color image board is presented to measure two in-plane components of incremental displacement field of diffuse objects. The deformation of the entire process from initial elastic deformation to fracture can be observed by using a Magneto Optical (MO) disk that has enough memory to record the image data of the entire process. By this system, some tensile experiments are achieved to investigate the mechanism of plastic deformation. The experimental results show that plastic deformation of tensile deformation is nonuniform. The material deforms in the distribution of domains. In the domains, the main deformation is uniform shear and rotation. At the boundary of the domains, the deformation is very large normal strain. With load, both the range and mode of domains are changing. At the end of plastic deformation, only two domains become dominant, and fracture happens at the boundary of the two domains.  相似文献   

16.
The asymptotic stress and deformation fields associated with the contact point singularity of a nearly-flat wedge indenter impinging on a specially-oriented single face-centered cubic crystal are derived analytically in a companion paper. In order to investigate the extent of the asymptotic fields, the indentation process is simulated numerically using single crystal plasticity. The quasistatically translating asymptotic fields consist of four angular elastic sectors separated by plastically deforming sector boundaries, as predicted in the companion paper. The asymptotic stress distributions are in accord with the analytical predictions. In addition, simulations are performed for a wedge indenter with a 90° included angle in order to investigate the consequences of finite deformation and finite lattice rotation. Several salient features of the deformation field for the nearly-flat indenter persist in the deformation field for the 90° wedge indenter. The existence of the salient features is validated by comparison to experimental measurements of the lower bound on geometrically necessary dislocation (GND) densities.  相似文献   

17.
A three-nested-deformation model is proposed to describe crack-tip fields in rubber-like materials with large deformation.The model is inspired by the distribution of the measured in-plane and out-of-plane deformation.The inplane displacement of crack-tip fields under both Mode I and mixed-mode(Mode I-II) fracture conditions is measured by using the digital Moire’ method.The deformation characteristics and experimental sector division mode are investigated by comparing the measured displacement fields under different fracture modes.The out-of-plane displacement field near the crack tip is measured using the three-dimensional digital speckle correlation method.  相似文献   

18.
Asymptotic stress and deformation fields under the contact point singularities of a nearly-flat wedge indenter and of a flat punch are derived for elastic ideally-plastic single crystals with three effective in-plane slip systems that admit a plane strain deformation state. Face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal-close packed (HCP) crystals are considered. The asymptotic fields for the flat punch are analogous to those at the tip of a stationary crack, so a potential solution is that the deformation field consists entirely of angular constant stress plastic sectors separated by rays of plastic deformation across which stresses change discontinuously. The asymptotic fields for a nearly-flat wedge indenter are analogous to those of a quasistatically growing crack tip fields in that stress discontinuities can not exist across sector boundaries. Hence, the asymptotic fields under the contact point singularities of a nearly-flat wedge indenter are significantly different than those under a flat punch. A family of solutions is derived that consists entirely of elastically deforming angular sectors separated by rays of plastic deformation across which the stress state is continuous. Such a solution can be found for FCC and BCC crystals, but it is shown that the asymptotic fields for HCP crystals must include at least one angular constant stress plastic sector. The structure of such fields is important because they play a significant role in the establishment of the overall fields under a wedge indenter in a single crystal. Numerical simulations—discussed in detail in a companion paper—of the stress and deformation fields under the contact point singularity of a wedge indenter for a FCC crystal possess the salient features of the analytical solution.  相似文献   

19.
Digital Image Correlation (DIC) provides a full-field non-contact optical method for accurate deformation measurement of materials, devices and structures. The measurement of three-dimensional (3D) deformation using DIC in general requires imaging with two cameras and a 3D-DIC code. In the present work, a new experimental technique, namely, Diffraction Assisted Image Correlation (DAIC) for 3D displacement measurement using a single camera and 2D-DIC algorithm is presented. A transmission diffraction grating is placed between the specimen and the camera, resulting in multiple images which are then used to obtain apparent in-plane displacements using 2D-DIC. The true in-plane and out-of-plane displacements of the specimen are obtained from the apparent in-plane displacements and the diffraction angle of the grating. The validity and accuracy of the DAIC method are demonstrated through 3D displacement measurement of a small thin membrane. This technique provides new avenues for performing 3D deformation measurements at small length scales and/or dynamic loading conditions.  相似文献   

20.
In this work, the mechanical behavior of a block of soft material subject to large deformation from a series of wedge-shaped indenters is evaluated. Data fields acquired from digital image correlation (DIC) are compared with the existing theoretical models. The slope angles of the wedges vary from 5° to 73.5°, and the minimum measurement uncertainties of the DIC system are established in advance to define the accuracy. It is concluded that the assumptions underpinning the analytical theory make it difficult to characterize large deformation of soft materials during contact. The strain fields are also obtained from the measured displacement field and verify the previously postulated existence of two deformation sectors, namely, a so-called shrinkage sector symmetric to the loading axis and an expansion sector, which become smaller with the increasing load and decreasing wedge angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号