首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In-plane surface displacements, when measured with 2D Digital Image Correlation (2D-DIC), are very sensitive to out-of-plane displacement components. Any out-of-plane motion of the surface can pollute the measured field by introducing artificial displacements. These displacements are difficult to separate from the underlying response of the surface and thereby limit the application of 2D-DIC in inverse problems where the test specimen has significant motion in the out-of-plane direction. In the context of inverse problems, we propose to partially relax this condition of no out-of-plane motion in 2D-DIC. With this approach, only the out-of-plane rigid-body motion of the specimen surface, which is initially in-plane, needs to be avoided while the requirement of surface deformations to be primarily in-plane is essentially waived. Compensation, based on the pinhole camera model, for out-of-plane displacements of the surface in response to applied load is included within the error function of the minimization problem. The improvements in material parameter estimation, obtained by using the proposed compensation strategy, are demonstrated by an example. The proposed technique makes it possible to utilize 2D-DIC with a simple conventional lens for an increased number of inverse problems; and in the process avoiding the computational and experimental difficulties associated with 3D measurement methods as well as the high cost and magnification limitations of a telecentric lens.  相似文献   

2.
二维数字图像相关方法作为一种非接触全场变形测量的光学方法,在工程上有着广泛的应用.由于其假设物体只发生面内位移,而实验中往往存在离面位移,从而引起测量误差.本文针对这一问题利用了针孔模型,从理论上分析了离面位移对普通镜头测量结果的影响,通过铝块平移实验验证了理论分析的正确性.利用提出的理论模型修正橡胶材料的变形测量结果,并与远心镜头测量结果进行对比,发现修正后的普通镜头测量的结果更接近远心镜头测量的结果.最后,本文根据理论分析和实验验证,给出了减小或消除离面位移造成误差的方法.  相似文献   

3.
陈凡秀  陈旭  谢辛  徐楠  冯秀  杨连祥 《实验力学》2015,30(2):157-164
将基于双目视觉的三维数字图像相关方法 (Three-dimension digital image correlation,3D-DIC)与多相机同步采集系统相结合,形成基于多相机的3D-DIC系统。依据三维空间误差(Three-dimensional residual,3Dresidual)最小原则,确定各点对应的最佳双目视觉系统,获得物体全场三维变形。以四相机3D-DIC系统为例,与测量精度达10~20nm的电子散斑干涉测量系统同时对平板的离面位移进行测量,并对测量得到的离面位移最大值进行了对比分析。结果显示,荷载较小时,四相机3D-DIC与电子散斑干涉测量系统误差稍大,最大达到2.7%;荷载增大,物体变形增大时,两种测量系统结果基本相同。文中讨论了四相机测量系统的不稳定对实验结果的影响。利用该四相机3D-DIC系统对镍合金不锈钢材料在高温场中的变形进行测量,获得了物体的三维变形场,并分析了材料的膨胀系数,得到了试件的热应变-温度曲线和膨胀系数随温度变化的关系式。  相似文献   

4.
俞立平  潘兵 《实验力学》2017,(5):687-698
介绍了一种基于单个彩色相机的新型全靶面、单相机三维数字图像相关(3D-DIC)方法。借助于设计巧妙的颜色分光光路,被测物体表面图像可以通过两条不同的光路达到相机靶面,采集的标定靶和实验件表面的彩色图像可以分离得到蓝色和红色子图像。通过使用3D-DIC分析标定靶和实验件表面分离后的蓝色和红色子图像,可以获得物体表面的三维形貌和变形。形貌测量、面内和离面平移、以及静动态三维变形实验验证了该单彩色相机3D-DIC方法的有效性和测量精准度。由于可避免双相机同步,且能实现无分辨率损失的全靶面三维形貌和变形测量,本文方法在需要实现瞬态位移和变形测量的爆炸、冲击、振动等领域中具有广阔重要的应用前景。  相似文献   

5.
By comparing two digital images of a test planar specimen surface recorded in different configurations, two-dimensional digital image correlation (2D-DIC) provides full-field displacements to sub-pixel accuracy and full-field strains in the recorded images. For the 2D-DIC systems using an optical lens, a simple pinhole imaging model is commonly used to describe the linear relationship between the measured sensor plane displacements and the actual displacements in the object surface. However, in a practical measurement, various unavoidable disadvantageous factors, such as small out-of-plane motion of the test object surface occurred after loading, small out-of-plane motion of the sensor target due to the self-heating or temperature variation of a camera, and geometric distortion of the imaging lens, may seriously impair or slightly change the originally assumed linear correspondence. In certain cases, these disadvantages may lead to significant errors in displacements and strains measured by 2D-DIC. In this work, the measurement errors of 2D-DIC due to the above three disadvantageous factors are first described in detail. Then, to minimize the errors associated with these disadvantages, a high-accuracy 2D-DIC system using a bilateral telecentric lens is established. The performance of the established 2D-DIC system and other two 2D-DIC systems using a conventional lens and an object-side telecentric lens are investigated experimentally using easy-to-implement stationary, out-of-plane and in-plane rigid body translation tests. A detailed examination reveals that a high-quality bilateral telecentric lens is not only insensitive to out-of-plane motion of the test object and the self-heating of a camera, but also demonstrates negligible lens distortion. Uniaxial tensile tests of an aluminum specimen were also performed to quantitatively compare the axial and transversal strains measured by the proposed 2D-DIC system and those measured by strain gage rosettes. The perfect agreement between the two measurements further verifies the accuracy of the established 2D-DIC system.  相似文献   

6.
In inverse finite element-based analysis, complete experimental data collection is critical for multi-parameter identification and physical modeling of all kinds of materials. In this paper, diffraction-assisted image correlation (DAIC) is improved and proposed for the deformation measurement of a soft material under indentation with no blind area. A simple and convenient image-based 3D calibration method was developed, and more accurate formulations for 3D displacement measurement based on a more rigorous imaging model were derived. Using the improved DAIC, a newly developed imaging device with indenter-fixed loading and no blind area is proposed that allows 3D displacements of the whole upper surface of a soft silica gel specimen to be retrieved. The experimental results demonstrate that the proposed method is an accurate, efficient and convenient tool with a simple structure for 3D indentation deformation measurement and illustrate its capabilities to capture deformation in indentation tests with tough testing requirements, such as in situ measurement with limited access (high integration level) and dynamic testing (capturing of synchronously stereo images).  相似文献   

7.
用于物体表面形貌和变形测量的三维数字图像相关方法   总被引:1,自引:0,他引:1  
潘兵  谢惠民  李艳杰 《实验力学》2007,22(6):555-567
使用单个摄像机的二维数字图像相关方法通常仅局限于平面物体的面内变形测量,而使用两个摄像机基于双目立体视觉原理的三维数字图像相关方法克服了这一局限,可对平面和曲面物体表面的三维形貌和载荷作用下的三维变形进行测量。本文介绍了三维数字图像相关方法的基本原理及其关键技术,并用两个典型的实验验证了该方法的有效性。  相似文献   

8.
This paper deals with the measurement of spherical impactor positions, velocities and acceleration (translations and rotations) during medium velocity impact experiments performed with gas-gun devices. A dedicated 2D Digital Image Correlation (DIC) technique based on customized interpolation functions is presented. The proposed method considers the rotations of the projectile which a standard subset-based DIC technique would undoubtedly have difficulty managing. Emphasis is placed on metrological performance and various validations are proposed. Measurements are additionally compared to those retrieved with conventional techniques. This DIC method provides a precise quantification of projectile motion and impact loads during gas-gun tests with a single high speed camera.  相似文献   

9.
Within the domain of structural health monitoring (SHM) measurement techniques have primarily relied on discrete sensing strategies using sensors physically attached to the structural system of interest. These sensors have proven effective in describing both global and local phenomena, but are limited to providing discrete response measurements of these systems. With the introduction of novel imaging tools and image analysis techniques, such as digital image correlation (DIC), the ability to measure the full-field response of these systems provides a novel approach to refining structural identification (St-ID) approaches used in SHM. This paper explores this proposed concept through a case study on a series of structural test specimens analyzed using 3D digital image correlation (3D-DIC) for St-ID. Finite element model updating (FEMU) was used as the technique for the structural identification. For the identification process, ABAQUS was interfaced with MATLAB to converge on the optimal unknown/uncertain system parameters of the experimental setup. 3D-DIC results provided a rich full-field dataset for the identification process, which was compared against measurements derived from traditional physical in-place sensors typically used in SHM. In this work a Hybrid Genetic Algorithm (HGA), which combines the genetic algorithm as a global optimization and a gradient-based method as a local optimization, was used for the FEMU based on 3D-DIC results of structural specimen subjected to variable loading. To minimize the error between the full field 3D-DIC measurements and FEA model updating results, an objective function was introduced that included the full-field contributions of strains and deformation response. The evolution of this objective function illustrated satisfactory convergence of the identified parameters and the excellent agreement of the experimental and numerical strain and displacement responses after the model updating process confirmed the success of the proposed approach. The results of this study highlight the advantage of this hybrid approach and provide the foundation for effective deployment of the proposed strategy for large-scale structural systems.  相似文献   

10.
In-situ straining experiments and residual stress evaluations by micromachining require accurate measurement of surface displacements. Such measurements can be conveniently done using Digital Image Correlation (DIC). Three surface decoration techniques are presented to enhance surface deformation and residual stress measurement capabilities on micron-scale samples within a Scanning Electron Microscope—Focused Ion Beam (SEM-FIB) instrument. They involve the use of Yttria-stabilized-zirconia nano particles applied chemically, nano platinum dots applied using FIB, and Focused Electron Beam (FEB) assisted deposition. The three decoration techniques create distinctive, random surface features that can be used with Digital Image Correlation to provide full field maps of surface displacements at high magnifications. A series of experiments using a FEGSEM-FIB demonstrated the effectiveness of the three surface decoration techniques for FEGSEM imaging at magnifications from 2,000× to 60,000×. The precision of the image correlation is substantially enhanced by the surface decoration, with displacement standard deviations reduced to the 0.005–0.03 pixel range, depending on the patch size used. By means of an example application, the use of surface decoration for microscopic hole-drilling residual stress measurements within a FIB-SEM is presented. The same trends in DIC uncertainty observed in the analysis of the surface decoration patterns carried through to the example application. Guidelines are given for appropriate choice of decoration method to suit various practical applications.  相似文献   

11.
The effectiveness of optical (mostly interferometric) methods for the measurement of residual stresses is largely demonstrated in literature. Nevertheless, these techniques are still confined to optical laboratories due to their high sensitivity to vibrations which makes it very difficult to perform the measurement in an industrial environment. Digital Image Correlation (DIC) has recently been proposed as a possible solution to this problem: this non-interferometric technique is much less affected by vibrations, but its sensitivity is relatively low, thus negatively affecting the accuracy of results. This work proposes to use a variant of Digital Image Correlation, known as Integrated DIC (iDIC), in combination with the hole drilling technique. Since iDIC directly incorporates in its formulation the displacement field related to hole drilling, it overcomes most of the problems of standard DIC; in this way it is possible to obtain accurate results without using interferometric techniques.  相似文献   

12.
Background

Digital Image and Volume Correlation (DIC and DVC) are non-contact measurement techniques that are used during mechanical testing for quantitative mapping of full-field displacements. The relatively high noise floor of DIC and DVC, which is exasperated when differentiated to obtain strain fields, often requires some form of filtering. Techniques such as median filters or least-squares fitting perform poorly over high displacement gradients, such as the strain localisation near a crack tip, discontinuities across crack flanks or large pores. As such, filtering does not always effectively remove outliers in the displacement field.

Objective

This work proposes a robust finite element-based filter that detects and replaces outliers in the displacement data using a finite element method-based approximation.

Methods

A method is formulated for surface (2D and Stereo DIC) and volumetric (DVC) measurements. Its validity is demonstrated using analytical and experimental displacement data around cracks, obtained from surface and full volume measurements.

Results

It is shown that the displacement data can be filtered in such a way that outliers are identified and replaced. Moreover, data can be smoothed whilst maintaining the nature of the underlying displacement field such as steep displacement gradients or discontinuities.

Conclusions

The method can be used as a post-processing tool for DIC and DVC data and will support the use of the finite element method as an experimental–numerical technique.

  相似文献   

13.
A novel method is presented to experimentally quantify evolving surface profiles. The evolution of a surface profile is quantified in terms of in-plane and out-of-plane surface displacements, using a Finite Element based Global Digital Image Correlation procedure. The presented method is applied to a case study, i.e. deformation-induced surface roughening during metal sheet stretching. The surface roughness was captured in-situ using a confocal optical profiler. The Global Digital Image Correlation method with linear triangular finite elements is applied to track the three-dimensional material movement from the measured height profiles. The extracted displacement fields reveal the full-field kinematics accompanying the roughening mechanism. Local deviations from the (average) global displacements are the result of the formation, growth, and stretching of hills and valleys on the surface. The presented method enables a full-field quantitative study of the surface height evolution, i.e. in terms of tracked surface displacements rather than average height values such as Root-Mean-Square or height-height correlation techniques. However, the technique does require that an initial surface profile, i.e. contrast, is present and that the contrast change between two measurements is minimal.  相似文献   

14.
Yang  J.  Tao  J. L.  Franck  C. 《Experimental Mechanics》2021,61(7):1181-1191
Experimental Mechanics - Digital Image Correlation (DIC) is a popular experimental technique for measuring full-field deformations in materials. Accurate motion and displacement field...  相似文献   

15.
The aim of this study is to develop a new regularized Digital Image Correlation (DIC) method for time dependent measurements. The correlation problem is written as a minimization problem over the space-time domain in a general formulation including 2D-DIC and Stereo DIC (SDIC). The unknown time-resolved displacement field is found as a sum of products of space and time functions, similarly to the Proper Generalized Decomposition in computational mechanics. It is shown that the space fields are less sensitive to noise as time regularity acts as a physical regularization of the space fields. The proposed method is illustrated by vibration measurement under harmonic excitation in 2D-DIC and SDIC.  相似文献   

16.
Digital Image Correlation (DIC) is employed for the measurement of full-field deformation during fluid–structure interaction experiments in a wind tunnel. The methodology developed for the wind tunnel environment is quantitatively assessed. The static deformation error of the system is shown to be less than 0.8% when applied to a curved aerofoil specimen moved through known displacements using a micrometre. Enclosed camera fairings were shown to be required to minimise error due to wind induced camera vibration under aerodynamic loading. The methodology was demonstrated using a high performance curved foil, from a NACRA F20 sailing catamaran, tested within the University of Southampton RJ Mitchell, 3.5 mx2.4 m, wind tunnel. The aerodynamic forces induced in the wind tunnel are relatively small, compared with typical hydrodynamic loading, resulting in small deformations. The coupled deflection and blade twist is evaluated over the tip region (80–100% Span, measured from the root) for a range of wind speeds and angles of attack. Steady deformations at low angles of attack were shown to be well captured however unsteady deformations at higher angles of attack were observed as an increase in variability due to hardware limitations in the current DIC system. It is concluded that higher DIC sample rates are required to assess unsteady deformations in the future. The full field deformation data reveals limited blade twist for low angles of attack, below the stall angle. For larger angles, however, there is a tendency to reduce the effective angle of attack at the tip of the structure, combined with an unsteady structural response. This capability highlights the benefits of the presented methodology over fixed-point measurements as the three dimensional foil deflections can be assessed over a large tip region. In addition, the methodology demonstrates that very small deformations and twist angles can be resolved.  相似文献   

17.
In this paper, a novel application of Finite Element Update Method (FEUM) is proposed for the inverse identification of material constitutive parameters in transversely isotropic laminates. Two-dimensional Digital Image Correlation (2D–DIC) is used for full-field measurements which is required for the identification process. Instead of measuring the in-plane displacements, which is a well-known application of 2D–DIC, we seek to measure the pseudo-displacements resulting from out-of-plane (towards camera) deflection of plate under a point load. These pseudo-displacements are basically the perspective projection of the three dimensional displacement fields on the image-plane of the image acquisition system. The cost function in this method is defined in terms of these projections instead of the true displacements – and hence the name Projected Finite Element Update Method (PFEUM). In this article, identification of in-plane elastic moduli of Carbon Fiber Reinforced Plastic (CFRP) plate has been performed using plate bending experiments which show pre-dominantly out-of-plane deflection with little contribution from the in-plane displacements. Identification results are validated by direct experimental measurements of the unknown elastic constants as well as theoretical estimates based on volume ratio of constituents. The results show good conformance between estimated and target values for at least three material parameters namely E1, E2 and G12. Effects of experimental noise on parameter estimates has also been evaluated to explain the observed deviation in estimated parameters with current test configuration.  相似文献   

18.
A Digital Image Correlation technique is proposed to control a quasi-static 6 degrees of freedom testing machine. This machine is based on a hexapod architecture, allowing displacements of several tens of centimeters and degrees, and with force capacities of several tens of kN and kN.m. The control technique is based on the measurement of the set of actuator lengths, from images of the end-effector of the machine. A firstattempt is shown with a single camera. Thoughrelevant, the results present too high uncertainties for the aimed applications. Several cameras are then used to improve the 3D rigid body motion displacement measurement of the end-effector. Thecamera positions are free, with an automatic calibration method assessing the needed coefficients for the control. The set of actuator lengths is then searched by global minimization of the difference between the current image and the reference image of each camera (i.e., the minimization is not performed independently for each camera). The algorithm is implemented on Graphical Processing Units to achieve computation times lower than 50 ms. An in-depth experimental validation of the whole setup is performed. For an actuator length range of 200 μm, the actuator length uncertainties are around 0.4 μm with 3 cameras. The errors of displacement of the end-effector are less than 2 μm, partially due to the validation setup itself.  相似文献   

19.
橡胶材料弹性模量数字图像相关测定法   总被引:1,自引:0,他引:1  
胡斌  贺玲凤  张蕊 《实验力学》2011,26(2):151-157
利用数字图像相关方法测量了小应变下柔性橡胶的弹性模量.用CCD相机记录单轴压缩实验中圆柱体橡胶试样表面人工散斑图像,作为数字图像相关测量技术中的变形信息载体.分析了镜头畸变对位移测量的影响,运用数字图像相关法得出小应变范围内像胶的应力应变曲线,计算出橡胶的弹性模量.并与采用千分表所得到的结果进行了比较,两者符合较好.实...  相似文献   

20.
A comparative study has been carried out to assess the accuracy of the Digital Image Correlation (DIC) technique for the quantification of large strains in the microstructure of an Interstitial Free (IF) steel used in automotive applications. A microgrid technique has been used in this study in order to validate independently the strain measurements obtained with DIC. Microgrids with a pitch of 5 microns were printed on the etched microstructure of the IF steel to measure the local in-plane strain distribution during a tensile test carried out in a Scanning Electron Microscope (SEM). The progressive deformation of the microstructure with microgrids has been recorded throughout the test as a sequence of micrographs and subsequently processed using DIC to quantify the distribution of local strain values. Strain maps obtained with the two techniques have been compared in order to assess the accuracy of the DIC measurements obtained using the natural patterns of the revealed microstructure in the SEM micrographs. The results obtained with the two techniques are qualitatively similar and thus, demonstrate the reliability of DIC applied to microstructures, even after large deformations in excess of 0.7. However, an average error of about 16?% was found in the strain values calculated using DIC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号