首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flow field of a flapping airfoil in Low Reynolds Number (LRN) flow regime is associated with complex nonlinear vortex shedding and viscous phenomena. The respective fluid dynamics of such a flow is investigated here through Computational Fluid Dynamics (CFD) based on the Finite Volume Method (FVM). The governing equations are the unsteady, incompressible two-dimensional Navier-Stokes (N-S) equations. The airfoil is a thin ellipsoidal geometry performing a modified figure-of-eight-like flapping pattern. The flow field and vortical patterns around the airfoil are examined in detail, and the effects of several unsteady flow and system parameters on the flow characteristics are explored. The investigated parameters are the amplitude of pitching oscillations, phase angle between pitching and plunging motions, mean angle of attack, Reynolds number (Re), Strouhal number (St) based on the translational amplitudes of oscillations, and the pitching axis location (x/c). It is shown that these parameters change the instantaneous force coefficients quantitatively and qualitatively. It is also observed that the strength, interaction, and convection of the vortical structures surrounding the airfoil are significantly affected by the variations of these parameters.  相似文献   

2.
The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re c  = 104), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re c  = 104), transition effects are observed to be minor and the dynamic stall vortex system remains fairly coherent. For Re c  = 4 × 104, the dynamic-stall vortex system is laminar at is inception, however shortly afterwards, it experiences an abrupt breakdown associated with the onset of spanwise instability effects. The computed phased-averaged structures for both values of Reynolds number are found to be in good agreement with the experimental data. Finally, the effect of structural compliance on the unsteady flow past a membrane airfoil is investigated. The membrane deformation results in mean camber and large fluctuations which improve aerodynamic performance. Larger values of lift and a delay in stall are achieved relative to a rigid airfoil configuration. For Re c = 4.85 × 104, it is shown that correct prediction of the transitional process is critical to capturing the proper membrane structural response.  相似文献   

3.
利用有限体积法实现了基于非正交同位网格的SIMPLE算法。基于熵分析方法,采用涡粘性模型求解湍流熵产方程,系统研究了湍流模型对二维翼型绕流流场熵产率的影响。通过计算NACA0012翼型在来流雷诺数为2.88×106时,0°攻角~16.5°攻角范围内的翼型表面压力系数分布和升阻力特性,验证了算法及程序的正确性。结果表明,选择不同湍流模型时,翼型流场熵产的计算结果存在差异,湍流耗散是引起流场熵产的主要原因;翼型流场的熵产主要发生在翼型前缘区、壁面边界层和翼型尾流区域,流场熵产率与翼型阻力系数线性相关;当产生分离涡时,粘性耗散引起的熵产下降。  相似文献   

4.
In transonic flow conditions, the shock wave/turbulent boundary layer interaction and flow separations on wing upper surface induce flow instabilities, ‘buffet’, and then the buffeting (structure vibrations). This phenomenon can greatly influence the aerodynamic performance. These flow excitations are self‐sustained and lead to a surface effort due to pressure fluctuations. They can produce enough energy to excite the structure. The objective of the present work is to predict this unsteady phenomenon correctly by using unsteady Navier–Stokes‐averaged equations with a time‐dependent turbulence model based on the suitable (kε) turbulent eddy viscosity model. The model used is based on the turbulent viscosity concept where the turbulent viscosity coefficient () is related to local deformation and rotation rates. To validate this model, flow over a flat plate at Mach number of 0.6 is first computed, then the flow around a NACA0012 airfoil. The comparison with the analytical and experimental results shows a good agreement. The ONERA OAT15A transonic airfoil was chosen to describe buffeting phenomena. Numerical simulations are done by using a Navier–Stokes SUPG (streamline upwind Petrov–Galerkin) finite‐element solver. Computational results show the ability of the present model to predict physical phenomena of the flow oscillations. The unsteady shock wave/boundary layer interaction is described. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The main purpose of this article is to develop a forced reduced‐order model based on the proper orthogonal decomposition (POD)/Galerkin projection (on isentropic Navier‐Stokes equations) and perturbation method on the compressible Navier‐Stokes equations. The resulting forced reduced‐order model will be used in optimal control of the separated flow over a NACA23012 airfoil at Mach number of 0.2, Reynolds number of 800, and high incidence angle of 24°. The main disadvantage of the POD/Galerkin projection method for control purposes is that controlling parameters do not show up explicitly in the resulting reduced‐order system. The perturbation method and POD/Galerkin projection on the isentropic Navier‐Stokes equations introduce a forced reduced‐order model that can predict the time varying influence of the controlling parameters and the Navier‐Stokes response to external excitations. An optimal control theory based on forced reduced‐order system is used to design a control law for a nonlinear reduced‐order system, which attempts to minimize the vorticity content in the flow field. The test bed is a laminar flow over NACA23012 airfoil actuated by a suction jet at 12% to 18% chord from leading edge and a pair of blowing/suction jets at 15% to 18% and 24% to 30% chord from leading edge, respectively. The results show that wall jet can significantly influence the flow field, remove separation bubbles, and increase the lift coefficient up to 22%, while the perturbation method can predict the flow field in an accurate manner.  相似文献   

6.
A new method for shape optimization with relatively large number of design variables is proposed. It is well known that gradient‐based methods converge to a local optimum. As a result, utilization of a richer design space does not necessarily lead to a better design. This is demonstrated via the design of an airfoil for maximum lift for Re = 1000 and α = 4° flow. The airfoil is represented by fourth‐order non‐uniform rational B‐splines, and the control points are used as design variables. Starting with a NACA0012 airfoil, it is found that the optimal airfoil obtained with 13 control points has far superior aerodynamic performance than the ones obtained with 39 and 61 control points. For effective utilization of a richer design space, it is proposed that the number of design variables be increased gradually. The method is demonstrated by designing high lift airfoils for Re = 1000 and 1 × 104. The objective function is the maximization of the time‐averaged lift coefficient for α = 4°. The optimization cycle with 27 control points is initiated with the optimal airfoil obtained with 13 control points. The process is continued with gradual increase in the number of design variables. Beyond a certain number of control points, the optimization leads to a spontaneous appearance of corrugations on the upper surface of the airfoil. The corrugations are responsible for the generation of small vortices that add to the suction on the upper surface of the airfoil and lead to enhanced lift. A stabilized finite element method is used to solve the unsteady flow and adjoint equations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Due to the damage caused by stall flutter, the investigation and modeling of the flow over a wind turbine airfoil at high angles of attack are essential. Dynamic mode decomposition (DMD) and dynamic mode decomposition with control (DMDc) are used to analyze unsteady flow and identify the intrinsic dynamics. The DMDc algorithm is found to have an identification problem when the spatial dimension of the training data is larger than the number of snapshots. IDMDc, a variant algorithm based on reduced dimension data, is introduced to identify the precise intrinsic dynamics. DMD, DMDc and IDMDc are all used to decompose the data for unsteady flow over the S809 airfoil that are obtained by numerical simulations. The DMD results show that the dominant feature of a static airfoil is the adjacent shedding vortices in the wake. For an oscillating airfoil, the DMDc results may fail to consider the effect of the input and have an identification problem. IDMDc can alleviate this problem. The dominant IDMDc modes show that the intrinsic flow for the oscillating case is similar to the unsteady flow over the static airfoil. Moreover, the input–output model identified by IDMDc can give better predictions for different oscillating cases than the identified DMDc model.  相似文献   

8.
The present paper is concerned with numerical investigations on the effect of inflow turbulence on the flow around a SD7003 airfoil. At a Reynolds number Rec =?60,000, an angle of attack α =?4° and a low or zero turbulence intensity of the oncoming flow, the flow past the airfoil is known to be dominated by early separation, subsequent transition and reattachment leading to a laminar separation bubble with a distinctive pressure plateau. The objective of the study is to investigate the effect of inflow turbulence on the flow behavior. For this purpose, a numerical methodology relying on a wall-resolved large-eddy simulation, a synthetic turbulence inflow generator and a specific source term concept for introducing the turbulence fluctuations within the computational domain is used. The numerical technique applied allows the variation of the free-stream turbulence intensity (TI) in a wide range. In order to analyze the influence of TI on the arising instantaneous and time-averaged flow field past the airfoil, the present study evaluates the range 0%TI ≤?11.2%, which covers typical values found in atmospheric boundary layers. In accordance with experimental studies it is shown that the laminar separation bubble first shrinks and finally completely vanishes for increasing inflow turbulence. Consequently, the aerodynamic performance in terms of the lift-to-drag ratio increases. Furthermore, the effect of the time and length scales of the isotropic inflow turbulence on the development of the flow field around the airfoil is analyzed and a perceptible influence is found. Within the range of inflow scales studied decreasing scales augment the receptivity of the boundary layer promoting an earlier transition.  相似文献   

9.
This work aims at investigating the mechanisms of separation and the transition to turbulence in the separated shear-layer of aerodynamic profiles, while at the same time to gain insight into coherent structures formed in the separated zone at low-to-moderate Reynolds numbers. To do this, direct numerical simulations of the flow past a NACA0012 airfoil at Reynolds numbers Re = 50,000 (based on the free-stream velocity and the airfoil chord) and angles of attack AOA = 9.25° and AOA = 12° have been carried out. At low-to-moderate Reynolds numbers, NACA0012 exhibits a combination of leading-edge/trailing-edge stall which causes the massive separation of the flow on the suction side of the airfoil. The initially laminar shear layer undergoes transition to turbulence and vortices formed are shed forming a von Kármán like vortex street in the airfoil wake. The main characteristics of this flow together with its main features, including power spectra of a set of selected monitoring probes at different positions on the suction side and in the wake of the airfoil are provided and discussed in detail.  相似文献   

10.
Vortex–structure interaction noise radiated from an airfoil embedded in the wake of a rod is investigated experimentally in an anechoic wind tunnel by means of a phased microphone array for acoustic tests and particle image velocimetry (PIV) for the flow field measurements. The rod–airfoil configuration is varied by changing the rod diameter (D), adjusting the cross-stream position (Y) of the rod and the streamwise gap (L) between the rod and the airfoil leading edge. Two noise control concepts, including “air blowing” on the upstream rod and a soft-vane leading edge on the airfoil, are applied to control the vortex–structure interaction noise. The motivation behind this study is to investigate the effects of the three parameters on the characteristics of the radiated noise and then explore the influences of the noise control concepts. Both the vortex–structure interaction noise and the rod vortex shedding tonal noise are analysed. The acoustic test results show that both the position and magnitude of the dominant noise source of the rod–airfoil model are highly dependent on the parameters considered. In the case where the vortex–structure interaction noise is dominant, the application of the air blowing and the soft vane can effectively attenuate the interaction noise. Flow field measurements suggest that the intensity of the vortex–structure interaction and the flow impingement on the airfoil leading edge are suppressed by the control methods, giving a reduction in noise.  相似文献   

11.
Hypersonic flow transition from laminar to turbulent due to the surface irregularities, like local cavities, can greatly affect the surface heating and skin friction. In this work, the hypersonic flows over a three-dimensional rectangular cavity with length-to-width-to-depth ratio, L:W:D, of 19.9:3.57:1 at two angles of attack (AoA) were numerically studied with Improved-Delayed-Detached-Eddy Simulation (IDDES) method to highlight the mechanism of transition triggered by the cavity. The present approach was firstly applied to the transonic flow over M219 rectangular cavity. The results, including the fluctuating pressure and frequency, agreed with experiment well. In the hypersonic case at Mach number about 9.6 the cavity is seen as “open” at AoA of −10° but “closed” at AoA of −15° unconventional to the two-dimensional cavity case where the flow always exhibits closed cavity feature when the length-to-depth ratio L/D is larger than 14. For the open cavity flow, the shear layer is basically steady and the flow maintains laminar. For the closed cavity case, the external flow goes into the cavity and impinges on the bottom floor. High intensity streamwise vortices, impingement shock and exit shock are observed causing breakdown of these vortices triggering rapid flow transition.  相似文献   

12.
Large-eddy simulation (LES) is employed to investigate the use of plasma-based actuation for the control of a vortical gust interacting with a wing section at a low Reynolds number. Flow about the SD7003 airfoil section at 4° angle of attack and a chord-based Reynolds number of 60,000 is considered in the simulation, which typifies micro air vehicle (MAV) applications. Solutions are obtained to the Navier–Stokes equations that were augmented by source terms used to represent body forces imparted by the plasma actuator on the fluid. A simple phenomenological model provided these body forces resulting from the electric field generated by the plasma. The numerical method is based upon a high-fidelity time-implicit scheme and an implicit LES approach which are used to obtain solutions on a locally refined overset mesh system. A Taylor-like vortex model is employed to represent a gust impinging upon the wing surface, which causes a substantial disruption to the undisturbed flow. It is shown that the fundamental impact of the gust on unsteady aerodynamic forces is due to an inviscid process, corresponding to variation in the effective angle of attack, which is not easily overcome. Plasma control is utilised to mitigate adverse effects of the interaction and improve aerodynamic performance. Physical characteristics of the interaction are described, and several aspects of the control strategy are explored. Among these are uniform and non-uniform spanwise variations of the control configuration, co-flow and counter-flow orientations of the directed force, pulsed and continuous operations of the actuator and strength of the plasma field. Results of the control situations are compared with regard to their effect upon aerodynamic forces. It was found that disturbances to the moment coefficient produced by the gust can be greatly reduced, which may be significant for stability and handling of MAV operations.  相似文献   

13.
The effect of varying airfoil thickness and camber on plunging and combined pitching and plunging airfoil propulsion at Reynolds number Re=200, 2000, 20 000 and 2×106 was studied by numerical simulations for fully laminar and fully turbulent flow regimes. The thickness study was performed on 2-D NACA symmetric airfoils with 6-50% thick sections undergoing pure plunging motion at reduced frequency k=2 and amplitudes h=0.25 and 0.5, and for combined pitching and plunging motion at k=2, h=0.5, phase ?=90°, pitch angle θo=15° and 30° and the pitch axis was located at 1/3 of chord from leading edge. At Re=200 for motions where positive thrust is generated, thin airfoils outperform thick airfoils. At higher Re significant gains could be achieved both in thrust generation and propulsive efficiency by using a thicker airfoil section for plunging and combined motion with low pitch amplitude. The camber study was performed on 2-D NACA airfoils with varying camber locations undergoing pure plunging motion at k=2, h=0.5 and Re=20 000. Little variation in thrust performance was found with camber. The underlying physics behind the alteration in propulsive performance between low and high Reynolds numbers has been explored by comparing viscous Navier-Stokes and inviscid panel method results. The role of leading edge vortices was found to be key to the observed performance variation.  相似文献   

14.
A new method of solving the problem of separation flow past a cascade of thin airfoils is proposed. The method is based on the model of separated flow past a single airfoil in which vortex wakes shed from the airfoil edges are modeled by vortex layers with time-averaged intensities. Under the assumption of a small deviation of the freestream angle α from the “impactless entry” angle α 0 the singular integral equation governing the flow kinematics is closed by a dynamic equation. It is shown that the separation effect on the time-averaged aerodynamic characteristics of the cascade is associated with the total pressure loss due to the flow energy expenditure on the vortex wake formation. The aerodynamic characteristics of the cascade calculated with and without account for flow separation differ by the second-order quantity ? = α ? α 0.  相似文献   

15.
对称翼型低雷诺数小攻角升力系数非线性现象研究   总被引:12,自引:0,他引:12  
采用Rogers发展的三阶Roe格式,求解非定常不可压N-S方程,时间方向为二阶精度双时间步方法, 数值模拟了对称翼型SD8020低雷诺数(Re=40000,100000)条件下,流场层流分离涡结构和升力系数随攻角的变化.同试验比较证明了数值模拟的正确性.通过对数值模拟时均化流场结果的详细分析,发现对称翼型在小雷诺数0°攻角附近出现的层流分离泡,其内部结构和演化规律都不同于经典层流分离泡模型,从而提出了一种后缘层流分离泡模型.并应用该模型对对称翼型小攻角低雷诺数流场特性以及升力系数非线性效应的形成机理进行了研究和解释.  相似文献   

16.
Aeroacoustic problems are often multi‐scale and a zonal refinement technique is thus desirable to reduce computational effort while preserving low dissipation and low dispersion errors from the numerical scheme. For that purpose, the multi‐size‐mesh multi‐time‐step algorithm of Tam and Kurbatskii [AIAA Journal, 2000, 38 (8), p. 1331–1339] allows changes by a factor of two between adjacent blocks, accompanied by a doubling in the time step. This local time stepping avoids wasting calculation time, which would result from imposing a unique time step dictated by the smallest grid size for explicit time marching. In the present study, the multi‐size‐mesh multi‐time‐step method is extended to general curvilinear grids by using a suitable coordinate transformation and by performing the necessary interpolations directly in the physical space due to multidimensional interpolations combining order constraints and optimization in the wave number space. A particular attention is paid to the properties of the Adams–Bashforth schemes used for time marching. The optimization of the coefficients by minimizing an error in the wave number space rather than satisfying a formal order is shown to be inefficient for Adams–Bashforth schemes. The accuracy of the extended multi‐size‐mesh multi‐time‐step algorithm is first demonstrated for acoustic propagation on a sinusoidal grid and for a computation of laminar trailing edge noise. In the latter test‐case, the mesh doubling is close to the airfoil and the vortical structures are crossing the doubling interface without affecting the quality of the radiated field. The applicability of the algorithm in three dimensions is eventually demonstrated by computing tonal noise from a moderate Reynolds number flow over an airfoil. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
We present a new aerodynamic design method based on the lattice Boltzmann method (LBM) and the adjoint approach. The flow field and the adjoint equation are numerically simulated by the GILBM (generalized form of interpolation supplemented LBM) on non-uniform meshes. The first-order approximation for the equilibrium distribution function on the boundary is proposed to diminish the singularity of boundary conditions. Further, a new treatment of the solid boundary in the LBM is described particularly for the airfoil optimization design problem. For a given objective function, the adjoint equation and its boundary conditions are derived analytically. The feasibility and accuracy of the new approach have been perfectly validated by the design optimization of NACA0012 airfoil.  相似文献   

18.
低Reynolds数NACA0012翼型绕流的流动特性分析   总被引:1,自引:0,他引:1  
吴鋆  李天  王晋军 《实验力学》2014,29(3):265-272
在水槽中应用PIV测速技术研究了NACA0012翼型在Reynolds数为8200时的流动特性,重点关注了翼型绕流结构中主频和扰动增长速率随迎角的变化。结果表明,分离剪切层的扰动增长符合指数规律;且随着迎角的增大,转捩过程加速,表现为扰动增长率逐渐增大,转捩的起始位置逐渐向上游移动。在所有实验迎角情况下,流场均由脱落旋涡主导,但其主导作用随着迎角的增大而削弱。  相似文献   

19.
A robust airfoil optimization platform is constructed based on the modified particle swarm optimization method (i.e., the second-order oscillating particle swarm method), which consists of an efficient optimization algorithm, a precise aerodynamic analysis program, a high accuracy surrogate model, and a classical airfoil parametric method. There are two improvements for the modified particle swarm method compared with the standard particle swarm method. First, the particle velocity is represented by the combination of the particle position and the variation of position, which makes the particle swarm algorithm a second-order precision method with respect to the particle position. Second, for the sake of adding diversity to the swarm and enlarging the parameter searching domain to improve the global convergence performance of the algorithm, an oscillating term is introduced to the update formula of the particle velocity. At last, taking two airfoils as examples, the aerodynamic shapes are optimized on this optimization platform. It is shown from the optimization results that the aerodynamic characteristic of the airfoils is greatly improved in a broad design range.  相似文献   

20.
This work examines the effect of local active flow control on stability and transition in a laminar separation bubble. Experiments are performed in a wind tunnel facility on a NACA 0012 airfoil at a chord Reynolds number of 130 000 and an angle of attack of 2 degrees. Controlled disturbances are introduced upstream of a laminar separation bubble forming on the suction side of the airfoil using a surface-mounted Dielectric Barrier Discharge plasma actuator. Time-resolved two-component Particle Image Velocimetry is used to characterise the flow field. The effect of frequency and amplitude of plasma excitation on flow development is examined. The introduction of artificial harmonic disturbances leads to significant changes in separation bubble topology and the characteristics of coherent structures formed in the aft portion of the bubble. The development of the bubble demonstrates strong dependence on the actuation frequency and amplitude, revealing the dominant role of incoming disturbances in the transition scenario. Statistical, topological and linear stability theory analysis demonstrate that significant mean flow deformation produced by controlled disturbances leads to notable changes in stability characteristics compared to those in the unforced baseline case. The findings provide a new outlook on the role of controlled disturbances in separated shear layer transition and instruct the development of effective flow control strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号