首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The onset of dynamic stall revisited   总被引:1,自引:0,他引:1  
Dynamic stall on a helicopter rotor blade comprises a series of complex aerodynamic phenomena in response to the unsteady change of the blade’s angle of attack. It is accompanied by a lift overshoot and delayed massive flow separation with respect to static stall. The classical hallmark of the dynamic stall phenomenon is the dynamic stall vortex. The flow over an oscillating OA209 airfoil under dynamic stall conditions was investigated by means of unsteady surface pressure measurements and time-resolved particle image velocimetry. The characteristic features of the unsteady flow field were identified and analysed utilising different coherent structure identification methods. An Eulerian and a Lagrangian procedure were adopted to locate the axes of vortices and the edges of Lagrangian coherent structures, respectively; a proper orthogonal decomposition of the velocity field revealed the energetically dominant coherent flow patterns and their temporal evolution. Based on the complementary information obtained by these methods the dynamics and interaction of vortical structures were analysed within a single dynamic stall life cycle leading to a classification of the unsteady flow development into five successive stages: the attached flow stage; the stall development stage; stall onset; the stalled stage; and flow reattachment. The onset of dynamic stall was specified here based on a characteristic mode of the proper orthogonal decomposition of the velocity field. Variations in the flow field topology that accompany the stall onset were verified by the Lagrangian coherent structure analysis. The instantaneous effective unsteadiness was defined as a single representative parameter to describe the influence of the motion parameters. Dynamic stall onset was found to be promoted by increasing unsteadiness. The mechanism that results in the detachment of the dynamic stall vortex from the airfoil was identified as vortex-induced separation caused by strong viscous interactions. Finally, a revised criterion to discern between light and deep dynamic stall was formulated.  相似文献   

2.
低雷诺数翼型蒙皮主动振动气动特性及流场结构数值研究   总被引:1,自引:0,他引:1  
刘强  刘周  白鹏  李锋 《力学学报》2016,48(2):269-277
针对低雷诺数(Re)翼型气动性能差的特点,文章通过对翼型柔性蒙皮施加主动振动的方法,提高翼型低Re下的气动特性,改善其流场结构.采用带预处理技术的Roe方法求解非定常可压缩Navier-Stokes方程,对NACA4415翼型低Re流动展开数值模拟.通过时均化和非定常方法对比柔性蒙皮固定和振动两种状态下的升阻力气动特性和层流分离流动结构.初步研究工作表明在低Re下柔性蒙皮采用合适的振幅和频率,时均化升阻力特性显著提高,分离泡结构由后缘层流分离泡转变为近似的经典长层流分离泡,分离点后移,分离区缩小.在此基础上,文章更加细致研究了柔性蒙皮两种状态下单周期内的层流分离结构及壁面压力系数分布非定常特性和演化规律.蒙皮固定状态下分离区前部流场结构和压力分布基本保持稳定,表现为近似定常分离,仅在后缘位置出现类似于卡门涡街的非定常流动现象.柔性蒙皮振动时从分离点附近开始便产生分离涡,并不断向下游移动、脱落,表现为非定常分离并出现大范围的压力脉动.蒙皮振动使流体更加靠近壁面运动,大尺度的层流分离现象得到有效抑制.   相似文献   

3.
The approximation of reduced linear evolution operator (propagator) via dynamic mode decomposition (DMD) is addressed for both linear and nonlinear events. The 2D unsteady supersonic underexpanded jet, impinging the flat plate in nonlinear oscillating mode, is used as the first test problem for both modes. Large memory savings for the propagator approximation are demonstrated. Corresponding prospects for the estimation of receptivity and singular vectors are discussed. The shallow water equations are used as the second large‐scale test problem. Excellent results are obtained for the proposed optimized DMD method of the shallow water equations when compared with recent POD‐based/discrete empirical interpolation‐based model reduction results in the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Unsteady vortex structures and vorticity convection over the airfoil (NACA 0012), oscillating in the uniform inflow, are studied by flow visualization and velocity measurements. The airfoil, pivoting at one-third of the chord, oscillates periodically near the static stalling angle of attack (AOA) at high reduced-frequency. The phase-triggering and modified phase-averaged techniques are employed to reconstruct the pseudo instantaneous velocity field over the airfoil. During the down stroke cycle, the leading-edge separation vortex is growing and the vortex near the trailing edge begins to shed into the wake. During the upstroke cycle, the leading-edge separation vortex is matured and moves downstream, and the counter clockwise vortex is forming near the trailing edge. Convection speeds and wavelength of the unsteady vortex structure over the airfoil equal to that of the counter clockwise vortex shed into the wake. This kind of vortex structure is termed as “synchronized shedding” type. The wavelength of unsteady vortex structure over the airfoil is significantly different from that at low reduced-frequency. Consistent convection speeds of the leading-edge separation vortex are acquired from the spatial-temporal variations of local circulation and local surface vorticity generation, and equals that predicted from flow visualization. Spatial-temporal variations of the local surface vorticity generation clearly reveal the formation and passage of the leading-edge separation vortex only in the region where the flow does not separate completely from the surface. Significant amounts of the surface vorticity are generated within the leading-edge region of the airfoil during the upstroke cycle. Only negligible amount of surface vorticity is produced within the region of complete flow separation. During the down stroke cycle, the surface vorticity generation is mild along the airfoil surface, except the leading-edge region where a small scale leading-edge separation vortex is forming and growing.  相似文献   

5.
The unsteady flow field past a backward-facing step in a rectangular duct is investigated by adopting time-resolved particle image velocimetry (PIV) in the Reynolds number range of 2,640–9,880 based on step height and the inlet average velocity. The PIV realizations are subjected to post-processing techniques, namely, proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). At low Reynolds numbers, the second spatial POD modes indicate the presence of the shear layer mode, whereas this feature shifts to higher modes at higher Reynolds numbers. The corresponding temporal modes are Fourier-transformed to obtain the dominant frequency, whose Strouhal number corroborates the above observation. Short-time windows in the transverse velocity component along the shear layer are selected to investigate the temporal stability of the flow field by DMD to quantify the growth rate of the shear layer mode. The higher harmonics of this mode are also observed to grow, albeit at lesser rate. By relating to POD analysis, the most energetic structures were found to correspond to the unstable modes. The correlation between these unstable DMD modes and the Fourier-filtered flow fields for the same frequencies indicate better match for the lower operating Reynolds number case as compared to higher ones. The spatial stability analysis demonstrates the growth of the shear layer vortices, which is combined with the temporal stability analysis to evaluate the phase velocity of the identified shear layer structures. The calculated phase velocity magnitude of the shear layer is found to be reasonably below the local velocity as expected.  相似文献   

6.
A large eddy simulation of flow over a forward-facing plate is performed and the resulting database analyzed with respect to sound radiation. Aeroacoustic analysis motivates an initial data compression comprising eduction of the zeroth-order spanwise Fourier mode. The space–time structure of this component of the flow is then analyzed using POD and DMD in order to probe both the energetics and dynamics of the sound-producing flow skeleton. Both data processing techniques educe flapping and shedding modes and identify a nonlinear interaction between the two. POD shows the flapping mode to be energetically unimportant, while DMD highlights its dynamic importance. The difference mode—vortex shedding modulated by flapping of the separation bubble—is found to be the most acoustically important feature of the flow.  相似文献   

7.
Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) were used to extract the coherent structures in turbulent cavity flows. The spatiotemporal representation of the modes was achieved by performing the circular convolution of a change of basis on the data sequence, wherein the transformation function was extracted from the POD or DMD. The spatiotemporal representation of the modes provided significant insight into the evolutionary behavior of the structures. Self-sustained oscillations arise in turbulent cavity flows due to unsteady separation at the leading edge. The turbulent cavity flow at ReD = 12,000 and a length to depth ratio L/D = 2 was analyzed. The dynamic modes extracted from the data clarified the presence of self-sustained oscillations. The spatiotemporal representation of the POD and DMD modes that caused self-sustained oscillations revealed the prevalent dynamics and evolutionary behavior of the coherent structures from their formation at the leading edge to their impingement at the trailing edge. A local minimum in the mode amplitude representing the energy contributions to the flow was observed upon the impingement of coherent structure at the trailing edge. The modal energy associated with the periodic formation of organized coherent structures followed by their dissipation upon impingement revealed the oscillatory behavior over time.  相似文献   

8.
The present work uses dynamic mode decomposition (DMD) to analyze wake flow of NACA0015 airfoil with Gurney flap. The physics of DMD is first introduced. Then the PIV-measured wake flow velocity field is decomposed into dynamical modes. The vortex shedding pattern behind the trailing edge and its high-order harmonics have been captured with abundant information such as frequency, wavelength and convection speed. It is observed that high-order dynamic modes convect faster than low-order modes; moreover the wavelength of the dynamic modes scales with the corresponding frequency in power law.  相似文献   

9.
A mathematical model of an unsteady separated flow around an oscillating airfoil is considered. This model is based on a viscid-inviscid approach. The points of separation and the intensity of vorticity displaced into the external flow are determined using boundary-layer equations in an integral form. Dynamic stall on an oscillating airfoil is studied. The mechanism and nature of antidamping are discovered. Novosibirsk State Technical University, Novosibirsk 630092. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 3, pp. 81–85, May–June, 2000.  相似文献   

10.
A large number of papers have been devoted to the study of unsteady flow past airfoil cascades. The majority of authors solve the problem for slightly curved profiles oscillating at low angles of attack.Among other work, we note that of Söhngen [1] on the flow past a dense cascade of plates oscillating synchronously and in phase in a potential fluid flow at a high angle of attack. Samoilovich [2] studied the flow past a cascade of plates of arbitrary shape oscillating with an arbitrary phase shift between neighboring plates. He presents the solution for the case of variable circulation in the quasisteady formulation. Stepanov [3] studied the same question with a linear approach to the flow behind the cascade. Musatov [4] examined the problem of the flow past a cascade of plates oscillating with an arbitrary phase shift between neighboring plates in a fluid flow, again at a high angle of attack, and considered the variation of the relative position of the plates durilng the oscillation process.The present paper considers the flow of a perfect incompressible fluid past a cascade of thin curved oscillating plates with account for the relative displacements of the plates during oscillation. To determine the intensity of the bound vortices per unit length, a linear integral equation is obtained. This represents a generalization of the Birnbaum equation to the case considered (see [5]). Equations are presented for calculating the unsteady aerodynamic forces and moments acting on the plates. As an example, the aerodynamic forces and moments are calculated for the quasistationary formulation of the problem.  相似文献   

11.
This paper presents a local domain‐free discretization (DFD) method for the simulation of unsteady flows over moving bodies governed by the incompressible Navier–Stokes equations. The discretization strategy of DFD is that the discrete form of partial differential equations at an interior point may involve some points outside the solution domain. All the mesh points are classified as interior points, exterior dependent points and exterior independent points. The functional values at the exterior dependent points are updated at each time step by the approximate form of solution near the boundary. When the body is moving, only the status of points is changed and the mesh can stay fixed. The issue of ‘freshly cleared nodes/cells’ encountered in usual sharp interface methods does not pose any particular difficulty in the presented method. The Galerkin finite‐element approximation is used for spatial discretization, and the discrete equations are integrated in time via a dual‐time‐stepping scheme based on artificial compressibility. In order to validate the present method for moving‐boundary flow problems, two groups of flow phenomena have been simulated: (1) flows over a fixed circular cylinder, a harmonic in‐line oscillating cylinder in fluid at rest and a transversely oscillating cylinder in uniform flow; (2) flows over a pure pitching airfoil, a heaving–pitching airfoil and a deforming airfoil. The predictions show good agreement with the published numerical results or experimental data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Application of the dynamic mode decomposition to experimental data   总被引:1,自引:0,他引:1  
The dynamic mode decomposition (DMD) is a data-decomposition technique that allows the extraction of dynamically relevant flow features from time-resolved experimental (or numerical) data. It is based on a sequence of snapshots from measurements that are subsequently processed by an iterative Krylov technique. The eigenvalues and eigenvectors of a low-dimensional representation of an approximate inter-snapshot map then produce flow information that describes the dynamic processes contained in the data sequence. This decomposition technique applies equally to particle-image velocimetry data and image-based flow visualizations and is demonstrated on data from a numerical simulation of a flame based on a variable-density jet and on experimental data from a laminar axisymmetric water jet. In both cases, the dominant frequencies are detected and the associated spatial structures are identified.  相似文献   

13.
A Kaplan turbine runner oscillating in turbine waterways is subjected to a varying hydrodynamic load. Numerical simulation of the related unsteady flow is time-consuming and research is very limited. In this study, a simplified method based on unsteady airfoil theory is presented for evaluation of the unsteady load for vibration analyses of the turbine shaft line. The runner is assumed to oscillate as a rigid body in spin and axial heave, and the reaction force is resolved into added masses and dampings. The method is applied on three Kaplan runners at nominal operating conditions. Estimates for added masses and dampings are considered to be of a magnitude significant for shaft line vibration. Moderate variation in the added masses and minor variation in the added dampings is found in the frequency range of interest. Reference results for added masses are derived by solving the boundary value problem for small motions of inviscid fluid using the finite element method. Good correspondence is found in the added mass estimates of the two methods. The unsteady airfoil method is considered accurate enough for design purposes. Experimental results are needed for validation of unsteady load analyses.  相似文献   

14.
A fully implicit high-order preconditioned flux reconstruction/correction procedure via reconstruction (FR/CPR) method is developed to solve the compressible Navier-Stokes equations at low Mach numbers. A dual-time stepping approach with the second-order backward differentiation formula (BDF2) is employed to ensure temporal accuracy for unsteady flow simulation. When dynamic meshes are used to handle moving/deforming domains, the geometric conservation law is implicitly enforced to eliminate errors due to the resolution discrepancy between BDF2 and the spatial FR/CPR discretization. The large linear system resulted from the spatial and temporal discretizations is tackled with the restarted generalized minimal residual solver in the PETSc (portable, extensible toolkit for scientific computation) library. Through several benchmark steady and unsteady numerical tests, the preconditioned FR/CPR methods have demonstrated good convergence and accuracy for simulating flows at low Mach numbers. The new flow solver is then used to study the effects of Mach number on unsteady force generation over a plunging airfoil when operating in low-Mach-number flows. It is observed that weak compressibility has a significant impact on thrust generation but has a negligible effect on lift generation of an oscillating airfoil.  相似文献   

15.
We investigate the sensitivity of reduced order models (ROMs) to training data spatial resolution as well as sampling rate. In particular, we consider proper orthogonal decomposition (POD), coupled with Galerkin projection (POD-GP), as an intrusive ROM technique. For nonintrusive ROMs, we consider two frameworks. The first is using dynamic mode decomposition (DMD), and the second is based on artificial neural networks (ANNs). For ANN, we utilized a residual deep neural network, and for DMD we have studied two versions of DMD approaches; one with hard thresholding and the other with sorted bases selection. Also, we highlight the differences between mean subtracting the data (centering) and using the data without mean subtraction. We tested these ROMs using a system of 2D shallow water equations for four different numerical experiments, adopting combinations of sampling rates and spatial resolutions. For these cases, we found that the DMD basis obtained with hard thresholding is sensitive to sampling rate. The sorted DMD algorithm helps to mitigate this problem and yields more stabilized and converging solution. Furthermore, we demonstrate that both DMD approaches without mean subtraction provide significantly more accurate results than DMD with mean subtracting the data. On the other hand, POD is relatively insensitive to sampling rate and yields better representation of the flow field. Meanwhile, spatial resolution has little effect on both POD and DMD performances. Numerical results reveal that an ANN on POD subspace (POD-ANN) performs remarkably better than POD-GP and DMD in capturing system dynamics, even with a small number of modes.  相似文献   

16.
In this work, numerical study of two dimensional laminar incompressible flow around an oscillating NACA0012 airfoil is proceeded using the open source code Open FOAM. Oscillatory motion types including pitching and flapping are considered. Reynolds number for these motions is assumed to be 12000 and effects of these motions and also different unsteady parameters such as amplitude and reduced frequency on aerodynamic coefficients are studied. For flow control on airfoil, dielectric barrier discharge plasma actuator is used in two different positions on airfoil and its effect is compared for the two types of considered oscillating motions. It is observed that in pitching motion, imposing plasma leads to an improvement in aerodynamic coefficients, but it does not have any positive effect on flapping motion.Also, for the amplitudes and frequencies investigated in this paper, the trailing edge plasma had a more desirable effect than other positions.  相似文献   

17.
In this article, the transonic inviscid flow over a deformable airfoil with plunging motion is studied numerically. A finite volume method based on the Roe scheme developed in a generalized coordinate is used along with an arbitrary Lagrangian-Eulerian method and a dynamic mesh algorithm to track the instantaneous position of the airfoil.The effects of different governing parameters such as the phase angle, the deformation amplitude, the initial angle of attack, the flapping frequency, and the Mach number on the unsteady flow field and aerodynamic coefficients are investigated in detail. The results show that maneuverability of the airfoil under various flow conditions is improved by the deformation. In addition, as the oscillation frequency of the airfoil increases, its aerodynamic performance is significantly improved.  相似文献   

18.
Dynamic mode decomposition (DMD) has proven to be a valuable tool for the analysis of complex flow-fields but the application of this technique to flows with moving boundaries is not straightforward. This is due to the difficulty in accounting in the DMD formulation, for a body of non-zero thickness moving through the field of interest. This work presents a method for decomposing the flow on or near a moving boundary by a change of reference frame, followed by a correction to the computed modes that is determined by the frequency spectrum of the motion. The correction serves to recover the modes of the underlying flow dynamics, while removing the effect of change in reference frame. This method is applied to flow over sinusoidally pitching airfoils, and the DMD analysis is used to derive useful insights regarding flow-induced pitch oscillations of these airfoils.  相似文献   

19.
In this paper, we consider the unsteady aerodynamics of a two-dimensional airfoil as a dynamical system whose input is the angle of attack (or airfoil motion) and output is the lift force. Based on this view, we discuss the evolution of lift and circulation from a purely dynamical perspective through step response, frequency response, transfer function, etc. In particular, we point to the relation between the high-frequency gain of the transfer function and the physics of the development of lift and circulation. Based on this view, we show that the circulatory lift dynamics is different from the circulation dynamics. That is, we show that the circulatory lift is not lift due to circulation. In fact, we show that the circulatory–non-circulatory classification is arbitrary. By comparing the steady and unsteady thin airfoil theory, we show that the circulatory lift possesses some acceleration (added-mass) effects. Finally, we perform simulations of Navier–Stokes equations to show that a non-circulatory maneuver in the absence of a free stream induces viscous circulation over the airfoil.  相似文献   

20.
The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036–1040, 1975).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号