首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
利用有限体积法实现了基于非正交同位网格的SIMPLE算法。基于熵分析方法,采用涡粘性模型求解湍流熵产方程,系统研究了湍流模型对二维翼型绕流流场熵产率的影响。通过计算NACA0012翼型在来流雷诺数为2.88×106时,0°攻角~16.5°攻角范围内的翼型表面压力系数分布和升阻力特性,验证了算法及程序的正确性。结果表明,选择不同湍流模型时,翼型流场熵产的计算结果存在差异,湍流耗散是引起流场熵产的主要原因;翼型流场的熵产主要发生在翼型前缘区、壁面边界层和翼型尾流区域,流场熵产率与翼型阻力系数线性相关;当产生分离涡时,粘性耗散引起的熵产下降。  相似文献   

2.
绕振荡水翼流动及其转捩特性的数值计算研究   总被引:1,自引:0,他引:1  
吴钦  王国玉  黄彪 《力学学报》2014,46(1):60-69
通过对比标准k-ω SST 湍流模型和基于标准k-ω SST 湍流模型修正的γ-Reθ 转捩湍流模型对绕振荡NACA66 水翼流动的数值计算结果与实验结果,对水翼振荡过程的水动力特性和流场结构变化进行了分析研究. 结果表明:与标准k-ω SST 湍流模型的数值计算结果相比,基于标准k-ω SST 湍流模型修正的γ-Reθ 转捩湍流模型能有效预测绕振荡翼型流场结构和水动力特性,捕捉流场边界层发生的流动分离和转捩现象;绕振荡水翼的流动过程可分为5 个特征阶段,当来流攻角较小时,在水翼前缘发生层流向湍流的转捩现象,水翼动力特征曲线出现变化拐点;随着来流攻角的增大,顺时针尾缘涡逐渐形成并向水翼前缘发展;当攻角较大时,前缘涡分离导致动力失速,水翼的动力特征曲线出现大幅波动;水翼处于顺时针向下旋转阶段,绕水翼的流动状态逐渐由湍流过渡为层流.  相似文献   

3.
绕振荡水翼流动及其转捩特性的数值计算研究   总被引:1,自引:0,他引:1  
吴钦  王国玉  黄彪 《力学学报》2014,46(1):60-69
通过对比标准k-ω SST 湍流模型和基于标准k-ω SST 湍流模型修正的γ-Reθ 转捩湍流模型对绕振荡NACA66 水翼流动的数值计算结果与实验结果,对水翼振荡过程的水动力特性和流场结构变化进行了分析研究. 结果表明:与标准k-ω SST 湍流模型的数值计算结果相比,基于标准k-ω SST 湍流模型修正的γ-Reθ 转捩湍流模型能有效预测绕振荡翼型流场结构和水动力特性,捕捉流场边界层发生的流动分离和转捩现象;绕振荡水翼的流动过程可分为5 个特征阶段,当来流攻角较小时,在水翼前缘发生层流向湍流的转捩现象,水翼动力特征曲线出现变化拐点;随着来流攻角的增大,顺时针尾缘涡逐渐形成并向水翼前缘发展;当攻角较大时,前缘涡分离导致动力失速,水翼的动力特征曲线出现大幅波动;水翼处于顺时针向下旋转阶段,绕水翼的流动状态逐渐由湍流过渡为层流.   相似文献   

4.
平流层双轴椭球体飞艇绕流场的数值分析   总被引:2,自引:0,他引:2  
本文在CFD软件FLUENT6.3的计算平台上采用时均Navier—Stokes方程与Realizable k-ε湍流模型对平流层双轴椭球体飞艇进行了数值模拟。着重分析了与飞艇轴线垂直的截面的周向摩擦阻力系数和压力分布情况,飞艇背部的分离流动特点,物面剪切层分离流动规律,空间流态,以及它们随攻角的变化规律。结果发现,飞艇背部的分离流动是基本对称的。在小攻角下只存在闭式分离,而随着攻角的增大也出现了开式分离。分离区随着攻角的增大而增大,分离线的起始点位置随着攻角的增大向上游移动。15°攻角时没有发现二次分离,30°,40°,45°攻角下都发现了二次分离。在相同的攻角下伴随流动沿飞艇轴线向下游发展时,分离流动的区域在横向截面上增大了。  相似文献   

5.
以S809翼型为研究对象,用CFD数值模拟计算的方法研究了在失速条件下,风力机翼型上下表面同时开缝的被动控制策略对翼型空气动力学特性的影响。采用基于速度耦合的SIMPLEC算法进行数值模拟,将四种常用的湍流模型(Spalart-Allmaras、k-e、k-w、k-w-SST)在12°和24°攻角下的计算结果和实验数据对比,得出了最优于翼型计算的湍流模型为k-w-SST。分析了缝隙位置、宽度和斜率对翼型气动性能的影响。结果表明:当开缝位置位于分离点附近时,翼型气动性能最优;当缝隙宽度为弦长的2%时,翼型气动性能最优;当缝隙和弦线的夹角为75°时,翼型气动性能最优,且在攻角超过24°时开缝对翼型的气动性能有不利影响。  相似文献   

6.
90°弯管内流动的理论模型及流动特性的数值研究   总被引:27,自引:0,他引:27  
从三维不可压缩雷诺时均Navier-Stokes方程出发,对90°弯曲管道内湍流流动进行数值模拟。网格划分采用六面体网格,湍流模型为RNGk-ε模型,在近壁区采用两层壁面模型进行修正,流场的计算结果与实验数据吻合较好。在此基础上,本文数值研究了来流方向对流场结构和流动特性的影响。得出在弯管流场中发生了分离现象,且随着来流侧滑角的增大,分离区范围增大。此外,随着来流从同一侧滑角变换至同一攻角时,横截面的二次流图像中也从具有两个对称主涡变成只具有一个主涡的现象。  相似文献   

7.
对称翼型低雷诺数小攻角升力系数非线性现象研究   总被引:12,自引:0,他引:12  
采用Rogers发展的三阶Roe格式,求解非定常不可压N-S方程,时间方向为二阶精度双时间步方法, 数值模拟了对称翼型SD8020低雷诺数(Re=40000,100000)条件下,流场层流分离涡结构和升力系数随攻角的变化.同试验比较证明了数值模拟的正确性.通过对数值模拟时均化流场结果的详细分析,发现对称翼型在小雷诺数0°攻角附近出现的层流分离泡,其内部结构和演化规律都不同于经典层流分离泡模型,从而提出了一种后缘层流分离泡模型.并应用该模型对对称翼型小攻角低雷诺数流场特性以及升力系数非线性效应的形成机理进行了研究和解释.  相似文献   

8.
基于非结构网格,采用带曲率修正的显式代数应力非缌出漠型(EARSM)和微分雷诺应力模型(DRSM),建立了用于模拟大攻角旋涡流动的计算方法。分别以尖前缘和钝前缘的65°三角翼为例,验证了EARSM模型和DRSM模型在两种典型亚音速计算状态下对复杂涡系干扰的模拟能力和旋涡的产生、发展、破裂过程。分别利用SA、BSL两种线性湍流模型对相关问题进行了计算;通过对多种计算的流场与气动力详细结果的比较分析,就几种湍流模型对大攻角复杂旋涡流动的预测能力和敏感性等进行了评估。结果表明:EARSM和DRSM能较好地预测旋涡流动的发展破裂,强于经典线性湍流模型;对边界层发展状况预测较差,导致旋涡启动位置较早。基于算例计算,对两种先进湍流模型的改进提出了适当的建议。所得结论将可为进一步开展大攻角旋涡流动模拟方法的研究提供参考。  相似文献   

9.
翼型绕流的电磁力控制   总被引:3,自引:0,他引:3  
将表面包覆电磁激活板的翼型,按一定的攻角,置于流动的弱电介质溶液中,电磁激活板可产生作用于流体的切向电磁力(Lorentz力),从而改变流体边界层的结构. 在转动水槽中,对翼型绕流及电磁力控制下的绕流形态进行了实验研究. 结果表明,未加电磁力时,前缘涡的脱落点是不确定的,与流场具体条件有关,而后缘涡仅在尖角处脱落. 前缘涡与后缘涡相互影响,并周期性的脱体,在尾部形成涡街. 施加电磁力后,当力的方向与流动方向相同时,可以在一定程度上抑制分离,消除涡街,其效果与减小攻角类似. 加反向电磁力时,则相当于加大攻角,在翼型体的背风面形成涡街.   相似文献   

10.
风浪充分发展下海面阻力系数的数值研究   总被引:4,自引:0,他引:4  
张子范  李家春 《力学学报》1997,29(4):385-394
考虑海气界面附近大气边界层内海浪充分发展情况下的海气动量交换.根据Donelan(1982)的观点建立海气界面模型,采用k ε模式以计算湍流流场.所得流场结构包括风速、湍流动能、湍能耗散及湍流粘性系数等都较合理;计算的海面阻力系数CD在中等风速时与实测结果符合良好.  相似文献   

11.
The effects of a trapped vortex cell (TVC) on the aerodynamic performance of a NACA0024 wing model were investigated experimentally at Re = 106 and 6.67×1056.67\times 10^{5}. The static pressure distributions around the model and the wake velocity profiles were measured to obtain lift and drag coefficients, for both the clean airfoil and the controlled configurations. Suction was applied in the cavity region to stabilize the trapped vortex. For comparison, a classical boundary layer suction configuration was also tested. The drag coefficient curve of the TVC-controlled airfoil showed sharp discontinuities and bifurcative behavior, generating two drag modes. A strong influence of the angle of attack, the suction rate and the Reynolds number on the drag coefficient was observed. With respect to the clean airfoil, the control led to a drag reduction only if the suction was high enough. Compared to the classical boundary layer suction configuration, the drag reduction was higher for the same amount of suction only in a specific range of incidence, i.e., α = −2° to α = 6° and only for the higher Reynolds number. For all the other conditions, the classical boundary layer suction configuration gave better drag performances. Moderate increments of lift were observed for the TVC-controlled airfoil at low incidence, while a 20% lift enhancement was observed in the stall region with respect to the baseline. However, the same lift increments were also observed for the classical boundary layer suction configuration. Pressure fluctuation measurements in the cavity region suggested a very complex interaction of several flow features. The two drag modes were characterized by typical unsteady phenomena observed in rectangular cavity flows, namely the shear layer mode and the wake mode.  相似文献   

12.
 The effect of background flow oscillations on transonic airfoil (NACA 0012) flow was investigated experimentally. The oscillations were generated by means of a rotating plate placed downstream of the airfoil. Owing to oscillating chocking of the flow caused by the plate, the airfoil flow periodically accelerated and decelerated. This led to strong variations in the surface pressure and the airfoil loading. The results are presented for two angles of attack, α=4° and α=8.5°, which correspond to the attached and separated steady airfoil flows, respectively. Received: 6 June 2000 / Accepted: 18 October 2001  相似文献   

13.
Results of experimental and numerical investigations of the effect of gas injection through a permeable porous surface on the drag coefficient of a cone-cylinder body of revolution in a supersonic flow with the Mach number range M h = 3–6 are presented. It is demonstrated that gas injection through a porous nose cone with gas flow rates being 6–8% of the free-stream flow rate in the mid-section leads to a decrease in the drag coefficient approximately by 5–7%. The contributions of the decrease in the drag force acting on the model forebody and of the increase in the base pressure to the total drag reduction are approximately identical. Gas injection through a porous base surface with the flow rate approximately equal to 1% leads to a threefold increase in the base pressure and to a decrease in the drag coefficient. Gas injection through a porous base surface with the flow rate approximately equal to 5% gives rise to a supersonic flow zone in the base region.  相似文献   

14.
Changes in the structure of a transonic flow around a symmetric airfoil and a decrease in the wave drag of the latter, depending on the energy-supply period and on localization and shape of the energy-supply zone, are considered by means of the numerical solution of two-dimensional unsteady equations of gas dynamics. Energy addition to the gas ahead of the closing shock wave in an immediate vicinity of the contour in zones extended along the contour is found to significantly reduce the wave drag of the airfoil. The nature of this decrease in drag is clarified. The existence of a limiting frequency of energy supply is found. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 64–71, May–June, 2006.  相似文献   

15.
由于风力机叶片与塔筒流场相互干涉,实际气动力与理想情况存在较大差异,这种干涉作用造成的气动力差异给叶片与塔筒结构可靠性带来不可忽视的影响.以翼型DU91-W2-250为研究对象,采用瞬态数值分析与本征正交分解方法,考虑叶片和塔筒流场相互干涉作用,分析顺桨工况翼型非稳气动力时频特性及其影响规律,量化不同雷诺数下塔叶相对位置及几何参数对气动力均值、波动幅度和频率的影响程度,通过流场模态能量分布形态分析,揭示流场干涉对气动力的影响机制.结果表明,翼型气动中心至塔筒几何中心的垂直距离、水平距离以及塔筒直径相对于翼型弦长的无量纲参数y*,x*和D*对气动力均有不同程度影响,其中y*对升阻力系数均值影响最大,对频率无明显影响,y*绝对值越大,Cl均值越接近单翼型Cl值,y*绝对值越小升阻力系数波动幅度越大,y*从-12增大到12,升力系数均值最小值为-0.48,最大值为1.16;x*减小和D*增大,反向阻力均值增大,波动幅度增大,波动频率略有下降,当x*小于临界值5时,带塔翼型阻力均值反向;在计算范围内,带塔翼型升力系数均值相对于单翼型升力系数最大偏差为...  相似文献   

16.
Dissipation rates of the turbulent kinetic energy and of the scalar variance are underestimated when the measurement resolution of the small scales of a turbulent flow field are insufficient. Results are presented of experiments conducted in a salt-stratified water tunnel (Schmidt number ∼700). Dissipation rates are determined to be underestimated, and thus correction techniques based on velocity structure functions and mixed-moment functions are proposed. Dissipation rates in laboratory experiments of shear-free, grid-generated turbulence are determined from balance calculations of the kinetic energy and scalar variance evolution equations. Comparisons between the structure function and balance estimates of dissipation show that the corrections are O(1) for the kinetic energy dissipation rate, and are O(100) for the scalar variance dissipation rate. This difference is due to the lack of resolution down to the Batchelor scales that is required for a high Schmidt number flow. Simple correction functions based on microscale Reynolds numbers are developed for both turbulent kinetic energy and scalar variance dissipation rates. Application of the technique to the results of laboratory experiments of density stratified turbulence, sheared turbulence, and sheared density stratified turbulence yields successful corrections. It is also demonstrated that the Karman–Howarth equality (and the analogous Yaglom equation) that relates second and third-order structure functions to dissipation rates is valid for both unstrained (decaying grid-generated turbulence) and density stratified and sheared turbulence at least up to the magnitudes of strains of the current experiments Nt∼10, St∼10, respectively. This is helpful for it allows the use of these equations in the analysis of turbulence even when the large scale background profiles of velocity and scalar are unknown.  相似文献   

17.
This experimental study of quasi-two-dimensional grid turbulence in gravity-driven soap-film flow focuses on the differences between the behavior of the flow and the theoretical picture of two-dimensional turbulence. A previously unattainable quality of velocity field acquisition facilitates simultaneous measurement of velocity field features in the scale range spanning over two orders of magnitude. The highly-resolved flow field data are analyzed statistically in terms of velocity structure functions, as well as energy and enstrophy averages at different downstream positions. We find the rate of decay of these averages to be quantifiably greater than the predictions of the two-dimensional turbulence theory. This increased decay is likely to be the manifestation of the extra dissipation mechanism present in soap-film flows and prominent on the larger scales—air drag. The structure function analysis confirms the notion. This research was supported by Los Alamos National Laboratory, task order BG109.  相似文献   

18.
This work aims at investigating the mechanisms of separation and the transition to turbulence in the separated shear-layer of aerodynamic profiles, while at the same time to gain insight into coherent structures formed in the separated zone at low-to-moderate Reynolds numbers. To do this, direct numerical simulations of the flow past a NACA0012 airfoil at Reynolds numbers Re = 50,000 (based on the free-stream velocity and the airfoil chord) and angles of attack AOA = 9.25° and AOA = 12° have been carried out. At low-to-moderate Reynolds numbers, NACA0012 exhibits a combination of leading-edge/trailing-edge stall which causes the massive separation of the flow on the suction side of the airfoil. The initially laminar shear layer undergoes transition to turbulence and vortices formed are shed forming a von Kármán like vortex street in the airfoil wake. The main characteristics of this flow together with its main features, including power spectra of a set of selected monitoring probes at different positions on the suction side and in the wake of the airfoil are provided and discussed in detail.  相似文献   

19.
The aerodynamic force and flow structure of NACA 0012 airfoil performing an unsteady motion at low Reynolds number (Re=100) are calculated by solving Navier-Stokes equations. The motion consists of three parts: the first translation, rotation and the second translation in the direction opposite to the first. The rotation and the second translation in this motion are expected to represent the rotation and translation of the wing-section of a hovering insect. The flow structure is used in combination with the theory of vorticity dynamics to explain the generation of unsteady aerodynamic force in the motion. During the rotation, due to the creation of strong vortices in short time, large aerodynamic force is produced and the force is almost normal to the airfoil chord. During the second translation, large lift coefficient can be maintained for certain time period and , the lift coefficient averaged over four chord lengths of travel, is larger than 2 (the corresponding steady-state lift coefficient is only 0.9). The large lift coefficient is due to two effects. The first is the delayed shedding of the stall vortex. The second is that the vortices created during the airfoil rotation and in the near wake left by previous translation form a short “vortex street” in front of the airfoil and the “vortex street” induces a “wind”; against this “wind” the airfoil translates, increasing its relative speed. The above results provide insights to the understanding of the mechanism of high-lift generation by a hovering insect. The project supported by the National Natural Science Foundation of China (19725210)  相似文献   

20.
An experimental study of circular cylinders with equally spaced two-dimensional surface perturbations in a uniform flow at Reynolds number of 3×104and very low free-stream turbulence is presented. The investigation concentrates on how the major flow characteristics are influenced by the geometry of the perturbations, their distribution and spacing, and orientation relative to the uniform flow. Measurements of body-surface pressures, vortex-formation length, spacing between the shear layers, vortex-shedding frequency and mean and fluctuating velocities within the wake as well as the drag force are presented. It is found that the drag coefficient and Strouhal number vary significantly with the location of the perturbations. The influence of the surface perturbations on the major flow characteristics are described and correlated with the near-body flow field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号