首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical properties of p-type ZnO doped by lithium and nitrogen   总被引:1,自引:0,他引:1  
A lithium and nitrogen doped p-type ZnO (denoted as ZnO: (Li, N)) film was prepared by RF-magnetron sputtering and post annealing techniques with c-Al2O3 as substrate. Its transmittance was measured to be above 95%. Three dominant emission bands were observed at 3.311, 3.219 and 3.346 eV, respectively, in the 80 K photoluminescence (PL) spectrum of the p-type ZnO:(Li, N), and are attributed to radiative electron transition from conduction band to a LiZn-N complex acceptor level (eFA), radiative recombination of a donor-acceptor pair and recombination of the LiZn-N complex acceptor bound exciton, respectively, based on temperature-dependent and excitation intensity-dependent PL measurement results. The LiZn-N complex acceptor level was estimated to be about 126 meV above the valence band by fitting the eFA data obtained in the temperature-dependent PL spectra.  相似文献   

2.
We performed first-principle total-energy calculations to investigate the mechanism for the realization of high quality p-type ZnO codoped with lithium and nitrogen. We find that the higher hole concentrations measured in the codoped ZnO is related to decreased ionization energy of acceptors and reduction of compensations. The dual acceptor NO-LiZn complex proposed in experiments is unstable. While in the (LiI-NO)-LiZn complex, where acceptor LiZn binds to the passivated (LiI-NO) complex is stable and acts as a single acceptor. The activation energy of this complex is about 60 meV lower than that of LiZn in Li-monodoped ZnO. The formation of inactive (LiI-NO) complexes creates a fully occupied impurity band just above the valence band maximum of ZnO. Thus Li atoms binding to this complex is activated by the electrons from the complex state rather than from the host states, accounting for decreased activation energy. Besides, LiI+ and NO bind tightly through the Coulomb interaction. Such binding will suppress the amount of compensating donor LiI and limit the compensation for the desired acceptor LiZn.  相似文献   

3.
The formation of single defects and defect complexes are investigated in Li, N co-doped ZnO by the first-principles plane wave method with projector augmented wave (PAW) pseudo-potential technology. We find that: (i) p-type conductivity could be achieved in single Li doped ZnO under an O-rich condition, since the formation energy of LiZn acceptor is much lower than the interstitial Lii; (ii) the dual-acceptor complex LiZn-NO is unlikely to form, and the good p-type conductivity is mainly attributed to the LiZn acceptor, even in Li, N co-doped ZnO; (iii) the additional introduction of N may help compensate the single Lii donor defects under certain growth conditions, but its role in the p-type conductivity in ZnO remains to be clarified. PACS 71.15.Mb; 73.61.Ga; 71.15.Nc; 71.20.Nr; 71.55.Gs  相似文献   

4.
The effects of annealing on the chemical states of N dopant, electrical, and optical properties of N-doped ZnO film grown by molecular beam epitaxy (MBE) are investigated. Both the as-grown ZnO:N film and the film annealed in N2 are of n-type conductivity, whereas the conductivity converts into p-type conductivity for the film annealed in O2. We suggest that the transformation of conductivity is ascribed to the change in ratio of the N molecular number on O site (N2)O to the N atom number on O site (NO) in ZnO:N films under the various annealed atmosphere. For the ZnO:N film annealed in N2, the percentage content of (N2)O is larger than that of NO, i.e.the ratio >1, resulting in the n-type conductivity. However, in the case of the ZnO:N film annealed in O2, the percentage content of (N2)O is fewer than that of NO, i.e., the ratio <1, giving rise to the p-type conductivity. There is an obvious difference between low-temperature (80K) PL spectra of ZnO:N film annealed in N2 and that of ZnO:N film annealed in O2. An emission band located at 3.358eV is observed in the spectra of the ZnO:N film after annealed in N2, this emission band is due to donor-bound exciton (D0X). After annealed in O2, the PL of the donor-bound exciton disappeared, an emission band located at 3.348eV is observed, this emission band is assigned to acceptor-bound exciton (A0X).  相似文献   

5.
L.J. Sun  J. Hu  H.Y. He  X.P. Wu  X.Q. Xu  B.X. Lin  Z.X. Fu  B.C. Pan   《Solid State Communications》2009,149(39-40):1663-1665
Ag–S codoped ZnO thin films have been fabricated on Si substrates by radio frequency (RF) magnetron sputtering using a thermal oxidation method. XRD and SEM measurements showed that the sample has hexagonal wurtzite structure with a preferential (002) orientation and the surface is composed of compact and uniform grains. AgZnnSO defect complexes were observed in the Ag–S codoped ZnO films by XPS analysis. Low temperature PL spectra showed neutral acceptor bound exciton emission related to AgZnnSO. The corresponding acceptor ionization energy of 150 meV is much lower than that of monodoped Ag (246 meV), which is favorable for p-type doping of ZnO.  相似文献   

6.
Nitrogen-doped ZnO (ZnO:N) films are prepared by thermal oxidation of sputtered Zn3N2 layers on A1203 substrates. The correlation between the structural and optical properties of ZnO:N films and annealing temperatures is investigated. X-ray diffraction result demonstrates that the as-sputtered Zn3N2 films are transformed into ZnO:N films after annealing above 600℃. X-ray photoelectron spectroscopy reveals that nitrogen has two chemical states in the ZnO:N films: the No acceptor and the double donor (N2)o. Due to the No acceptor, the hole concentration in the film annealed at 700℃ is predicted to be highest, which is also confirmed by Hall effect measurement. In addition, the temperature dependent photoluminescence spectra allow to calculate the nitrogen acceptor binding energy.  相似文献   

7.
N-In codoped ZnO nanobelts were successfully synthesized via high-temperature chemical vapor deposition for the first time, using the mixture of In/ZnO as a precursor. The EDX spectrum showed that In was introduced into ZnO nanobelts. In order to better understand the optical properties of N-In codoped ZnO nanobelts, the Raman and low-temperature PL spectra of the undoped, In-doped and N-In codoped ZnO nanostructures were measured. By contrasting, N is incorporated into the nanobelts. The temperature dependent photoluminescence (PL) spectra were investigated. Their PL spectra in the temperature from 9 K to room temperature were dominated by an AoX emission of excitons bound to 2No-InZn acceptor complexes. The dissociation energy of the acceptor complexes is estimated to be 89-112 meV.  相似文献   

8.
Based on first-principles calculations, (Sb, N) codoped ZnO are investigated. We find that SbZn–4NO have lower formation energy and can form p-type conduction with smaller hole effective mass. In comparation to monodoping of Sb, SbZn–4NO complex can form better p-type conductivity than SbZn–2VZn, which may be strongly compensated by SbZn defect and result in a decrease of p-type conduction. So we inferred that (Sb, N) codoping in ZnO under O-poor condition should be a realizable candidate of p-type conduction.  相似文献   

9.
The effects of annealing temperature on the structural and optical properties of ZnO films grown on Si (100) substrates by sol-gel spin-coating are investigated. The structural and optical properties are characterized by x-ray diffraction, scanning electron microscopy and photoluminescence spectra. X-ray diffraction analysis shows the crystal quality of ZnO films becomes better after annealing at high temperature. The grain size increases with the temperature increasing. It is found that the tensile stress in the plane of ZnO films first increases and then decreases with the annealing temperature increasing, reaching the maximum value of 1.8 GPa at 700℃. PL spectra of ZnO films annealed at various temperatures consists of a near band edge emission around 380 nm and visible emissions due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial oxygen (Oi), interstitial zinc (Zni) and zinc vacancy (VZn^-), which are generated during annealing process. The evolution of defects is analyzed by PL spectra based on the energy of the electronic transitions.  相似文献   

10.
P doped ZnO films were grown on quartz by radio frequency-magnetron sputtering method using a ZnO target mixed with 1.5 at% P2O5 in the atmosphere of Ar and O2 mixing gas. The as-grown P doped ZnO film showed n-type conductivity, which was converted to p-type after 800 °C annealing in Ar gas. The P doped ZnO has a resistivity of 20.5 Ω cm (p∼2.0×1017 cm−3) and a Hall mobility of 2.1 cm2 V−1 s−1. XRD measurement indicated that both the as-grown and the annealed P doped ZnO films had a preferred (0 0 2) orientation. XPS study agreed with the model that the PZn-2VZn acceptor complex was responsible for the p-type conductivity as found in the annealed P-doped ZnO. Temperature-dependent photoluminescence (PL) spectrum showed that the dominant band is located at 3.312 eV, which was attributed to the free electronic radiative transition to neutral acceptor level (FA) in ZnO. The PZn-2VZn acceptor complex level was estimated to be at EV=122 meV.  相似文献   

11.
司杭  何海燕  潘必才 《物理学报》2012,61(15):157301-157301
利用第一性原理的方法研究了在ZnO非极性表面和极性表面的不同原子层中, 分别用Li原子去替位Zn原子(记为LiZn)后的相对稳定性和热离化能. 计算结果表明LiZn处于ZnO表面区域时的稳定性优于在ZnO体中时的稳定性, 并且LiZn在表面区域的热离化能要比它在体结构中的热离化能大很多, 于是, ZnO表面效应的存在会使Li掺杂的ZnO薄膜材料的p型导电能力大幅度降低. 这个结果对低维ZnO体系p型掺杂有着重要的指导意义. 我们进一步发现, 在不同的ZnO表面区域里LiZn的热离化能会表现出很大的差异是源于不同的表面具有不同的静电势分布.  相似文献   

12.
We have grown nitrogen-doped ZnO (ZnO:N) films by laser molecular-beam epitaxy. The use of lattice-matched ScAlMgO4 substrates prevented the degradation of crystallinity induced by the nitrogen incorporation to the films. Despite this improvement, we have not obtained ZnO:N films which showed p-type conductivity. We studied the optical properties of these ZnO:N films. Donor-acceptor pair (DAP) luminescence was observed. The results indicate the formation of an acceptor state. The energy position of the DAP luminescence is lower than that reported by Look et al. [Appl. Phys. Lett. 81 (2002) 1830]. The DAP luminescence band shifts to lower energy with increasing nitrogen concentration. A photoluminescence recombination possibly due to the free-electron-to-acceptor (FA) transition was observed at temperatures higher than 40 K. The acceptor ionization energy was estimated from the energy position of the FA luminescence to be 266 meV.  相似文献   

13.
Nitrogen-doped p-type ZnSe, p-type ZnSySe1−y, and p-type Zn1−xMgxSySe1−y epilayers were grown on n-type GaAs (1 0 0) substrates by molecular beam epitaxy. Photoluminescence (PL) spectra for the p-type ZnSe and the lattice-matched p-type ZnS0.06Se0.94, and p-type Zn0.92Mg0.08S0.12Se0.88 epilayers showed a deep acceptor bound exciton emission and a donor-acceptor pair emission. Temperature-dependent PL measurements were carried out to determine the activation energies of these states. The activation energies of the acceptor-bound excitons and the donor-acceptor pairs were determined to be 40 and 65 meV in the p-type ZnSe epilayer, 20 and 45 meV in the p-type ZnS0.06Se0.94, and 45 and 43 meV in the p-type Zn0.92Mg0.08S0.12Se0.88 epilayers.  相似文献   

14.
Uniform and flat single crystal ZnO:P nanobelts (NBs) were fabricated on Si (1 0 0) substrates by the thermal evaporation method. The growth process, free-catalyst self-assembly vapor-solid (V-S) mechanism, was described and investigated deeply in terms of thermodynamics and kinetics. Then, the photoluminescence (PL) properties of ZnO NBs were studied in a temperature range from 10 to 270 K. At 10 K the recombination of acceptor-bound exciton (A0X) was predominant in the PL spectrum, and was attributed to the transition of PZn−2VZn complex bound exciton. The active energy of A0X and acceptor binding energy were calculated to be 17.2 and 172 meV, respectively. The calculated acceptor binding energy of P doped ZnO nanostructure is in good agreement with that of P doped ZnO film.  相似文献   

15.
High quality Co-doped ZnO thin films are grown on single crystalline Al2O3(0001) and ZnO(0001) substrates by oxygen plasma assisted molecular beam epitaxy at a relatively lower substrate temperature of 450℃. The epitaxial conditions are examined with in-situ reflection high energy electron diffraction (RHEED) and ex-situ high resolution x-ray diffraction (HRXRD). The epitaxial thin films are single crystal at film thickness smaller than 500nm and nominal concentration of Co dopant up to 20%. It is indicated that the Co cation is incorporated into the ZnO matrix as Co^2+ substituting Zn^2+ ions. Atomic force microscopy shows smooth surfaces with rms roughness of 1.9 nm. Room-temperature magnetization measurements reveal that the Co-doped ZnO thin films are ferromagnetic with Curie temperatures Tc above room temperature.  相似文献   

16.
Using first-principles calculations based on density functional theory, we investigated systematically the electronic structures and magnetic properties of N monodoping and (Li, N) codoping in ZnO. The results indicate that monodoping of N in ZnO favors a spin-polarized state with a magnetic moment of 0.95 μB per supercell and the magnetic moment mainly comes from the unpaired 2p electrons of N and O atoms. In addition, it was found that monodoping of N in ZnO is a weak ferromagnet and it is the spin-polarized O atoms that mediate the ferromagnetic exchange interaction between the two N atoms. Interestingly, by Li substitutional doping at the cation site (LiZn), the ferromagnetic stability can be increased significantly and the formation energy can be evidently reduced for the defective system. Therefore, we think that the enhancement of ferromagnetic stability should be attributed to the accessorial holes and the lower formation energy induced by LiZn doping.  相似文献   

17.
为了实现对Li—N共掺杂p型ZnO薄膜的形成机制以及其稳定p型导电原因的揭示,利用X射线光电子谱及基于同步辐射光源的X射线吸收精细结构谱测试对薄膜的局域电子结构进行了测算分析.获得了Li—N成键及Li—N复合型受主形成的信号,利用光致发光测量计算其受主能级为122 mV.证实了薄膜中Li—N复合型受主的形成,而Li—N...  相似文献   

18.
An ab initio calculation based on density functional theory is applied to study Be–N codoped ZnO and the possible complexes are discussed. The calculated results show that the substitutional N defect at the O site (NO) easily binds with the interstitial Be (Bei), rather than the substitutional Be defect at the Zn site (BeZn). This indicates that 4BeZn–NO complex is not a stable acceptor and is unlikely to form. Fortunately, Bei–3NO is of high structural stability and its transition energy is very low due to the impurity band caused by the Bei–2NO passive complex. Therefore, Bei–3NO can serve as a stable source of p-type conductivity. In addition, it is also suggested that Be–N codoped p-type ZnO can be prepared under Zn-rich condition because Bei–3NO has the lowest formation energy in this environment.  相似文献   

19.
p型K:ZnO导电机理的第一性原理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于密度泛函理论,利用局域密度近似的第一性原理平面波赝势方法,对掺K以及含有氢填隙(Hi)、氧空位(VO)、锌填隙(Zni)和锌空位(VZn)的K:ZnO电子结构分别进行了研究.结果表明,1) 单独掺K可引入浅受主,但系统总能增高;2) K与H共掺可降低系统总能,提升稳定性;3) VO在K+H:ZnO中的形成比Zni困难得多,二者都是 关键词: 氧化锌 p型 第一性原理 电子结构  相似文献   

20.
Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition   总被引:1,自引:0,他引:1  
p-Type ZnO thin films have been realized via monodoping antimony (Sb) acceptor by using pulsed laser deposition. The obtained films with the best electrical properties show a hole concentration in the order of 1018 cm−3 and resistivity in the range of 2-4 Ω cm. X-ray diffraction measurements revealed that all the films possessed a good crystallinity with (0 0 2)-preferred orientation. Guided by X-ray photoemission spectroscopy analysis and a model for large-sized-mismatched group-V dopant in ZnO, an SbZn-2VZn complex is believed to be the most possible acceptor in the Sb-doped p-type ZnO thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号