首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li-N dual-doped p-type ZnO (ZnO:(Li, N)) thin films are prepared by pulsed laser deposition. The optical properties are studied using temperature-dependent photoluminescence. The Lizn-No complex acceptor with an energy 1evel of 138 me V is identified from the free-to-neutral-acceptor (e, A0 ) emission. The Haynes factor is about 0.087 for the Lizn-No complex acceptor, with the acceptor bound-exciton binding energy of 12meV. Another deeper acceptor state located at 248 meV, also identified from the (e, A0) emission, is attributed to zinc vacancy acceptor. The two acceptor states might both contribute to the observed p-type conductivity in ZnO:(Li,N).  相似文献   

2.
Optical properties of p-type ZnO doped by lithium and nitrogen   总被引:1,自引:0,他引:1  
A lithium and nitrogen doped p-type ZnO (denoted as ZnO: (Li, N)) film was prepared by RF-magnetron sputtering and post annealing techniques with c-Al2O3 as substrate. Its transmittance was measured to be above 95%. Three dominant emission bands were observed at 3.311, 3.219 and 3.346 eV, respectively, in the 80 K photoluminescence (PL) spectrum of the p-type ZnO:(Li, N), and are attributed to radiative electron transition from conduction band to a LiZn-N complex acceptor level (eFA), radiative recombination of a donor-acceptor pair and recombination of the LiZn-N complex acceptor bound exciton, respectively, based on temperature-dependent and excitation intensity-dependent PL measurement results. The LiZn-N complex acceptor level was estimated to be about 126 meV above the valence band by fitting the eFA data obtained in the temperature-dependent PL spectra.  相似文献   

3.
p型K:ZnO导电机理的第一性原理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于密度泛函理论,利用局域密度近似的第一性原理平面波赝势方法,对掺K以及含有氢填隙(Hi)、氧空位(VO)、锌填隙(Zni)和锌空位(VZn)的K:ZnO电子结构分别进行了研究.结果表明,1) 单独掺K可引入浅受主,但系统总能增高;2) K与H共掺可降低系统总能,提升稳定性;3) VO在K+H:ZnO中的形成比Zni困难得多,二者都是 关键词: 氧化锌 p型 第一性原理 电子结构  相似文献   

4.
The effect of changes in Li content on the structural property of sol-gel Li-doped ZnO films was investigated in this study. The observed changes of the Li incorporation-induced strain along c-axis are closely related to the different ratios between the concentrations of Li interstitials (Lii) and Li substituting for Zn (LiZn) in the films. According to the observed results from X-ray diffraction (XRD) and photoluminescence measurements, we found that the domination of the dissociative mechanism in the Li-doped ZnO films led to transformation from LiZn to Lii, involving the formation of Zn vacancies (VZn). In addition, the interaction between these defects (that is, LiZn, Lii, VZn and oxygen vacancy) and the crystal structure may lead to the abnormal shift of the (0 0 2) diffraction peak position determined from XRD measurements.  相似文献   

5.
司杭  何海燕  潘必才 《物理学报》2012,61(15):157301-157301
利用第一性原理的方法研究了在ZnO非极性表面和极性表面的不同原子层中, 分别用Li原子去替位Zn原子(记为LiZn)后的相对稳定性和热离化能. 计算结果表明LiZn处于ZnO表面区域时的稳定性优于在ZnO体中时的稳定性, 并且LiZn在表面区域的热离化能要比它在体结构中的热离化能大很多, 于是, ZnO表面效应的存在会使Li掺杂的ZnO薄膜材料的p型导电能力大幅度降低. 这个结果对低维ZnO体系p型掺杂有着重要的指导意义. 我们进一步发现, 在不同的ZnO表面区域里LiZn的热离化能会表现出很大的差异是源于不同的表面具有不同的静电势分布.  相似文献   

6.
An ab initio calculation based on density functional theory is applied to study Be–N codoped ZnO and the possible complexes are discussed. The calculated results show that the substitutional N defect at the O site (NO) easily binds with the interstitial Be (Bei), rather than the substitutional Be defect at the Zn site (BeZn). This indicates that 4BeZn–NO complex is not a stable acceptor and is unlikely to form. Fortunately, Bei–3NO is of high structural stability and its transition energy is very low due to the impurity band caused by the Bei–2NO passive complex. Therefore, Bei–3NO can serve as a stable source of p-type conductivity. In addition, it is also suggested that Be–N codoped p-type ZnO can be prepared under Zn-rich condition because Bei–3NO has the lowest formation energy in this environment.  相似文献   

7.
We performed first-principle total-energy calculations to investigate the mechanism for the realization of high quality p-type ZnO codoped with lithium and nitrogen. We find that the higher hole concentrations measured in the codoped ZnO is related to decreased ionization energy of acceptors and reduction of compensations. The dual acceptor NO-LiZn complex proposed in experiments is unstable. While in the (LiI-NO)-LiZn complex, where acceptor LiZn binds to the passivated (LiI-NO) complex is stable and acts as a single acceptor. The activation energy of this complex is about 60 meV lower than that of LiZn in Li-monodoped ZnO. The formation of inactive (LiI-NO) complexes creates a fully occupied impurity band just above the valence band maximum of ZnO. Thus Li atoms binding to this complex is activated by the electrons from the complex state rather than from the host states, accounting for decreased activation energy. Besides, LiI+ and NO bind tightly through the Coulomb interaction. Such binding will suppress the amount of compensating donor LiI and limit the compensation for the desired acceptor LiZn.  相似文献   

8.
Based on first-principles calculations, (Sb, N) codoped ZnO are investigated. We find that SbZn–4NO have lower formation energy and can form p-type conduction with smaller hole effective mass. In comparation to monodoping of Sb, SbZn–4NO complex can form better p-type conductivity than SbZn–2VZn, which may be strongly compensated by SbZn defect and result in a decrease of p-type conduction. So we inferred that (Sb, N) codoping in ZnO under O-poor condition should be a realizable candidate of p-type conduction.  相似文献   

9.
Using first-principles calculations based on density functional theory, we investigated systematically the electronic structures and magnetic properties of N monodoping and (Li, N) codoping in ZnO. The results indicate that monodoping of N in ZnO favors a spin-polarized state with a magnetic moment of 0.95 μB per supercell and the magnetic moment mainly comes from the unpaired 2p electrons of N and O atoms. In addition, it was found that monodoping of N in ZnO is a weak ferromagnet and it is the spin-polarized O atoms that mediate the ferromagnetic exchange interaction between the two N atoms. Interestingly, by Li substitutional doping at the cation site (LiZn), the ferromagnetic stability can be increased significantly and the formation energy can be evidently reduced for the defective system. Therefore, we think that the enhancement of ferromagnetic stability should be attributed to the accessorial holes and the lower formation energy induced by LiZn doping.  相似文献   

10.
Based on the density functional theory (DFT), using first-principles plane-wave ultrasoft pseudopotential method, the models of the unit cell of pure ZnO and two highly Li-2N co-doped supercells of Zn0.9375Li0.0625O0.875N0.125 and Zn0.9167Li0.0833O0.8333N0.1667 were constructed, and the geometry optimization for the three models was carried out. The total density of states (TDOS) and the band structures (BS) were also calculated. The calculation results showed that in the range of high doping concentration, when the co-doping concentration is more than a certain value, the conductivity decreased with the increase of co-doping concentration of Li-2N in ZnO, which agrees with the change trend of the experimental results.  相似文献   

11.
Ag-doped ZnO thin films were deposited on quartz glass substrates by a radio-frequency (RF) magnetron sputtering technique at room temperature (RT). The influence of Ag doping content on the electrical and Raman scattering properties of ZnO films were systematically investigated by Hall measurement system and Raman scattering spectrum. Two additional local vibrational modes (LVMs) at 230.0 and 394.5 cm?1 induced by Ag dopant in ZnO:Ag films were observed by Raman analyses at RT, corresponding to Ag atoms located at O sites (LV MZn?Ag) and Zn sites (LV MAg?O) in ZnO lattice. Moreover, we further studied the effect of donor AgO and acceptor AgZn defects on the electrical properties of ZnO:Ag films. The results indicate that O-rich condition is preferred to suppress the formation of AgO defects and enhance AgZn defects. The p-type ZnO:Ag film was achieved by properly optimizing the annealing conditions under O-rich condition.  相似文献   

12.
Lithium (Li) and magnesium (Mg) co-doped zinc oxide (ZnO) thin films were deposited by sol–gel method using spin coating technique. The films were deposited on glass substrates and annealed at different temperatures. The effects of annealing temperature on the structural, optical and electrical properties of the deposited films were investigated using X-ray diffraction (XRD), Ultraviolet–Visible absorption spectra (UV–VIS), photoluminescence spectra (PL), X-ray photo electron spectroscopy (XPS) and Hall measurements. XRD patterns indicated that the deposited films had a polycrystalline hexagonal wurtzite structure with preferred (0 0 0 2) orientation. All films were found to exhibit a good transparency in the visible range. Analysis of the absorption edge revealed that the optical band gap energies of the films annealed at different temperatures varies between 3.49 eV and 3.69 eV. Room temperature PL spectra of the deposited films annealed at various temperatures consist of a near band edge emission and visible emission due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial zinc (Zni), interstitial oxygen (Oi) and zinc vacancy (VZn) which are generated during annealing process. The influence of annealing temperature on the chemical state of the dopants in the film was analysed by XPS spectra. Ion beam analysis (Rutherford back scattering) experiments were performed to evaluate the content of Li and Mg in the films. Hall measurements confirmed the p-type nature of the deposited films.  相似文献   

13.
陈立晶  李维学  戴剑锋  王青 《物理学报》2014,63(19):196101-196101
基于密度泛函理论的第一性原理平面波超软赝势法对ZnO(Mn,N)体系的晶格结构、形成能、态密度以及电荷密度进行了计算和理论研究.研究结果表明,Mn和N共掺杂ZnO体系具有更低的杂质形成能和更高的化学稳定性,更加适合p型掺杂.Mn和N以1:2的比例掺杂时,体系的形成能降低,体系更稳定;同时,体系中形成双受主能级缺陷,使得杂质固溶度增大,体系中载流子数增多,p型化特征更明显.此外,研究发现相比于N单掺杂ZnO体系,Mn和N原子共掺杂ZnO体系有更多的杂质态密度穿越费米能级,在导带与价带之间形成更宽的受主N 2p的杂质态,同时空穴有效质量变小.与Mn-N共掺杂体系相比,Mn-2N共掺杂体系的受主杂质在费米能级附近的态密度更加弥散,非局域化特征明显.因此,Mn-N共掺杂有望成为p型掺杂的更有效的手段.  相似文献   

14.
P doped ZnO films were grown on quartz by radio frequency-magnetron sputtering method using a ZnO target mixed with 1.5 at% P2O5 in the atmosphere of Ar and O2 mixing gas. The as-grown P doped ZnO film showed n-type conductivity, which was converted to p-type after 800 °C annealing in Ar gas. The P doped ZnO has a resistivity of 20.5 Ω cm (p∼2.0×1017 cm−3) and a Hall mobility of 2.1 cm2 V−1 s−1. XRD measurement indicated that both the as-grown and the annealed P doped ZnO films had a preferred (0 0 2) orientation. XPS study agreed with the model that the PZn-2VZn acceptor complex was responsible for the p-type conductivity as found in the annealed P-doped ZnO. Temperature-dependent photoluminescence (PL) spectrum showed that the dominant band is located at 3.312 eV, which was attributed to the free electronic radiative transition to neutral acceptor level (FA) in ZnO. The PZn-2VZn acceptor complex level was estimated to be at EV=122 meV.  相似文献   

15.
ZnO中Li相关缺陷结构性质   总被引:4,自引:3,他引:1       下载免费PDF全文
徐群和  康俊勇 《发光学报》2006,27(4):509-513
采用第一性原理量子力学分子动力学方法,基于32个原子的超原胞模型,计算了ZnO中各种Li相关缺陷的有关几何和电子结构。通过不同模型的计算分析表明,ZnO中Li杂质在间隙位上的总能比替位Zn格位的能量更低,但却形成施主能级。进一步通过构造Li替Zn位LiZn与不同本征缺陷所构成的复合体结构,并对模拟计算的结果进行分析比较得出,O反位OZn可与LiZn形成比Li间隙位更稳定的复合体,可高溶解度地稳定存在于ZnO中,并在禁带中产生受主能级,是较好的p型导电性候选缺陷。  相似文献   

16.
利用分子束外延设备在蓝宝石衬底上生长了B/N共掺的p型ZnO薄膜,对比了B/N共掺和N单掺杂样品的物理学性能。通过X射线光电子能谱测试证明了在薄膜中存在有B和B-N键。B/N共掺样品的空穴浓度比单一N掺杂样品高近两个量级。且ZnO:(B,N)薄膜在两年多的时间内一直显示稳定的p型电导。这是由于B-N键的存在提高了N在ZnO薄膜中的固溶度,且B-N键之间强的键能和B占据Zn位所表现的弱施主特性不会带来强的施主补偿效应,说明B是N掺杂ZnO薄膜的一种良好的共掺元素。  相似文献   

17.
射频反应磁控溅射法退火生长Na-N共掺杂p-ZnO薄膜   总被引:2,自引:1,他引:1       下载免费PDF全文
采用射频反应磁控溅射法退火生长得到了Na-N共掺杂p-ZnO薄膜。XRD测试结果表明,退火前后均得到c轴择优取向的ZnO薄膜。Hall测试结果表明:退火后薄膜的电学性能明显改善,得到了p-ZnO薄膜,退火温度为450℃时取得最佳电学性能:室温电阻率为139.2Ω.cm,迁移率为0.2cm2.V-1.s-1,空穴浓度为2.5×1017cm-3。XPS分析表明:Na掺入ZnO中作为受主NaZn而存在,N主要以N—H键的形式存在,其受主NO的作用不明显,但是否存在NaZn-NO受主复合体,还需进一步的研究。  相似文献   

18.
In the present work, post-annealing is adopted to investigate the formation and the correlation of Sb complexes and Zn interstitials in Sb-ion implanted ZnO films, by using Raman scattering technique and electrical characterizations. The damage of Zn sublattice, produced by ion bombardment process is discerned from the unrecovered E2 (L) peak in annealed high Sb+ dose implanted samples. It is suggested that the Zn sublattice may be strongly affected by the introduction of Sb dopant because of the formation of SbZn-2VZn complex acceptor. The appearance of a new peak at 510 cm 1 in the annealed high dose Sb+ implanted samples is speculated to result from (Zn interstitials-O interstitials) Zni-Oi complex, which is in a good accordance with the electrical measurement. The p-type ZnO is difficult to obtain from the Sb+ implantation, however, which can be realized by in-situ Sb doping with proper growth conditions instead.  相似文献   

19.
李万俊  方亮  秦国平  阮海波  孔春阳  郑继  卞萍  徐庆  吴芳 《物理学报》2013,62(16):167701-167701
采用基于密度泛函理论的第一性原理赝势法对Ag-N共掺杂ZnO体 系以及间隙N和间隙H掺杂p型ZnO: (Ag, N)体系的缺陷形成能和离化能进行了研究. 结果表明, 在AgZn和NO所形成的众多受主复合体中, AgZn-NO受主对不仅具有较低的缺陷形成能同时其离化能也相对较小, 因此, AgZn-NO受主对的形成是Ag-N共掺ZnO体系实现p型导电的主要原因. 研究发现, 当ZnO: (Ag, N)体系有额外间隙N原子存在时, AgZn-NO受主对容易与Ni形成AgZn-(N2)m O施主型缺陷, 该施主缺陷的形成降低了Ag-N共掺ZnO的掺杂效率因而不利于p型导电. 当间隙H引入到ZnO: (Ag, N)体系时, Hi易与AgZn-NO受主对形成 受主-施主-受主复合结构(AgZn-Hi-NO), 此复合体的形成不仅提高了AgZn-NO受主对在ZnO中的固溶度, 同时还能使其受主能级变得更浅而有利于p型导电. 因此, H辅助Ag-N共掺ZnO可能是一种有效的p型掺杂手段. 关键词: p型ZnO 缺陷形成能 受主离化能 第一性原理  相似文献   

20.
为了实现对Li—N共掺杂p型ZnO薄膜的形成机制以及其稳定p型导电原因的揭示,利用X射线光电子谱及基于同步辐射光源的X射线吸收精细结构谱测试对薄膜的局域电子结构进行了测算分析.获得了Li—N成键及Li—N复合型受主形成的信号,利用光致发光测量计算其受主能级为122 mV.证实了薄膜中Li—N复合型受主的形成,而Li—N...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号