首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation of ionization and displacement damage in silicon NPN bipolar junction transistors (BJTs) is presented. The transistors were irradiated separately with 90-keV electrons, 3-MeV protons and 40-MeV Br ions. Key parameters were measured {\em in-situ} and the change in current gain of the NPN BJTS was obtained at a fixed collector current (I_{\rm c}=1~mA). To characterise the radiation damage of NPN BJTs, the ionizing dose D_{\i} and displacement dose D_{\d} as functions of chip depth in the NPN BJTs were calculated using the SRIM and Geant4 code for protons, electrons and Br ions, respectively. Based on the discussion of the radiation damage equation for current gain, it is clear that the current gain degradation of the NPN BJTs is sensitive to both ionization and displacement damage. The degradation mechanism of the current gain is related to the ratio of D_{\rm d}/(D_{\rm d}+D_{\rm i}) in the sensitive region given by charged particles. The irradiation particles leading to lower D_{\rm d}/(D_{\rm d}+D_{\rm i}) within the same chip depth at a given total dose would mainly produce ionization damage to the NPN BJTs. On the other hand, the charged particles causing larger D_{\rm d}/(D_{\rm d}+D_{\rm i}) at a given total dose would tend to generate displacement damage to the NPN BJTs. The Messenger--Spratt equation could be used to describe the experimental data for the latter case.  相似文献   

2.
In our previous work we investigated electronically non-adiabatic effects in using crossed molecular beam scattering coupled with velocity mapped ion imaging. The prior experiments placed limits on the cross-section for electronically non-adiabatic spin-orbit excitation and electronically non-adiabatic spin-orbit quenching . In the present work, we investigate electronically non-adiabatic spin-orbit quenching for which is the required first step for the reaction of Cl* to produce ground state HCl+H products. In these experiments we collide Cl (2P) with H2 at a series of fixed collision energies using a crossed molecular beam machine with velocity mapped ion imaging detection. Through an analysis of our ion images, we determine the fraction of electronically adiabatic scattering in Cl* +H2, which allows us to place limits on the cross-section for electronically non-adiabatic scattering or quenching. We determine the following quenching cross-sections σ quench(2.1 kcal/mol) = 26 ± 21 ?2, σ quench(4.0 kcal/mol) = 21 ± 49 ?2, and σ quench(5.6 kcal/mol) = 14 ± 41 ?2.  相似文献   

3.
杨宇  王茺  杨瑞东  李亮  熊飞 《中国物理 B》2009,18(11):4906-4911
Si+ ion-implanted silicon wafers are annealed at different temperatures from room temperature to 950~℃ and then characterized by using the photoluminescence (PL) technique at different recorded temperatures (RETs). Plentiful optical features are observed and identified clearly in these PL curves. The PL spectra of these samples annealed in different temperature ranges are correspondingly dominated by different emission peaks. Several characteristic features, such as an R line, S bands, a W line, the phonon-assistant W^\rm TA and Si^\rm TO peaks, can be detected in the PL spectra of samples annealed at different temperatures. For the samples annealed at 800~\du, emission peaks from the dislocations bounded at the deep energy levels of the forbidden band, such as D_1 and D2 bands, can be observed at a temperature as high as 280~K. These data strongly indicate that a severe transformation of defect structures could be manipulated by the annealing and recorded temperatures. The deactivation energies of the main optical features are extracted from the PL data at different temperatures.  相似文献   

4.
5.
Solar modules and arrays are the conventional energy resources of space satellites. Outside the earth's atmosphere, solar panels experience abnormal radiation environments and because of incident particles, photovoltaic (PV) parameters degrade. This article tries to analyze the electrical performance of electron and photon-irradiated mono-crystalline silicon (mono-Si) solar cells. PV cells are irradiated by mono-energetic electrons and poly-energetic photons and immediately characterized after the irradiation. The mean degradation of the maximum power (Pmax) of silicon solar cells is presented and correlated using the displacement damage dose (Dd) methodology. This method simplifies evaluation of cell performance in space radiation environments and produces a single characteristic curve for Pmax degradation. Furthermore, complete analysis of the results revealed that the open-circuit voltage (Voc) and the filling factor of mono-Si cells did not significantly change during the irradiation and were independent of the radiation type and fluence. Moreover, a new technique is developed that adapts the irradiation-induced effects in a single-cell equivalent electrical circuit and adjusts its elements. The “modified circuit” is capable of modeling the “radiation damage” in the electrical behavior of mono-Si solar cells and simplifies the designing of the compensation circuits.  相似文献   

6.
DIPTIMOY GHOSH 《Pramana》2012,79(4):895-898
A comprehensive study of the impact of new-physics operators with different Lorentz structures on decays involving the b ?? s ?? ?+? ?? ? transition is performed. The effects of new vector?Caxial vector (VA), scalar?Cpseudoscalar (SP) and tensor (T) interactions on the differential branching ratios, forward?Cbackward asymmetries (A FB??s), and direct CP asymmetries of ${\bar B}_{\rm s}^0 \to \mu^+ \mu^-$ , ${\bar B}_{\rm d}^0 \to$ $ X_{\rm s} \mu^+ \mu^-$ , ${\bar B}_{\rm s}^0 \to \mu^+ \mu^- \gamma$ , ${\bar B}_{\rm d}^0 \to {\bar K} \mu^+ \mu^-$ , and ${\bar B}_{\rm d}^0\to {\bar{K}^*} \mu^+ \mu^-$ are examined. In ${\bar B}_{\rm d}^0\to {\bar{K}^*} \mu^+ \mu^-$ , we also explore the longitudinal polarization fraction f L and the angular asymmetries $A_{\rm T}^{(2)}$ and A LT, the direct CP asymmetries in them, as well as the triple-product CP asymmetries $A_{\rm T}^{\rm (im)}$ and $A^{\rm (im)}_{\rm LT}$ . While the new VA operators can significantly enhance most of the observables beyond the Standard Model predictions, the SP and T operators can do this only for A FB in ${\bar B}_{\rm d}^0 \to {\bar K} \mu^+ \mu^-$ .  相似文献   

7.
8.
A ZnO nanowire (NW) field-effect transistor (FET) is fabricated and characterized, and its characterization of ultraviolet radiation is also investigated. On the one hand, when the radiation time is 5~min, the radiation intensity increases to 5.1~μ W/cm2, while the saturation drain current (I_\rm dss) of the nanowire FET decreases sharply from 560 to 320~nA. The field effect mobility (μ ) of the ZnO nanowire FET drops from 50.17 to 23.82~cm2/(V.s) at V_\rm DS=2.5~V, and the channel resistivity of the FET increases by a factor of 2. On the other hand, when the radiation intensity is 2.5~μ W/cm^2 , the DC performance of the FET does not change significantly with irradiation time (its performances at irradiation times of 5 and 20~min are almost the same); in particular, the I_\rm dss of NW FET only reduces by about 50~nA. Research is underway to reveal the intrinsic properties of suspended ZnO nanowires and to explore their device applications.  相似文献   

9.
周倩  万宝年  吴振伟  黄娟 《中国物理》2005,14(12):2539-2545
The line-integrated optical measurement of impurity radiation profiles for the study of light impurity transport is performed in the HT-7 tokamak. The carbon impurity line emissivity is obtained by Abel inversion. The radial transport behaviours of carbon impurities at different central line averaged electron densities ne are investigated in ohmic discharges. The diffusion coefficient Dk(r), the convection velocity Wk(r) and the total flux of the impurity ions Fk decrease with the increase of ne, which shows a reduction in the impurity particle transport at higher electron densities.  相似文献   

10.
本文针对GaAs/Ge太阳电池,利用位移损伤剂量法研究了其在轨服役条件下的性能退化行为.首先在地面模拟辐照环境中,试验获得了在不同能量的电子和质子辐照下的电池性能随辐照注量的退化行为.基于上述实验结果以及计算获得的带电粒子在电池中的非电离能量损失(NIEL)获得了不同能量电子辐照位移损伤的等效指数n为1.7,电子损伤剂量转化为质子损伤剂量等效系数为5.2,并进一步建立了电池性能随位移损伤剂量的退化方程.利用该方法对国产GaAs/Ge太阳电池在500,22000和36000 km轨道带电粒子辐 关键词: GaAs/Ge太阳电池 辐照损伤 带电粒子 位移损伤剂量  相似文献   

11.
通过引入散射理论建立了发光二极管模型,并考虑低计量率电离辐照损伤影响,建立了器件材料散射因子与辐照损伤的关系模型.在输入电流宽范围变化的条件下,测量了器件在不同辐照条件下的电学特性,实验结果与理论模型符合良好.通过对测量结果和以上模型的分析,深入研究低剂量电离辐照损伤和发光二极管性能衰减的关系.证实由于复合中心上的电子浓度增加,导致界面态浓度和散射几率的略微增大,从而造成其I-V和L-V特性的略微衰减.同时由于重离子辐照可直接产生位移效应,使界面态浓度明显上升,因此其对发光二极管的影响较电离辐照大很多.  相似文献   

12.
武瑞琪  郭迎春  王兵兵 《物理学报》2019,68(8):80201-080201
量化计算是理论研究分子的重要手段,对于具有高对称群的分子,采用子群计算是常用的方法.分子的电子态或分子轨道等的对称性在子群的表示中会出现重迭,从而不能从子群的结果直接给出电子态或分子轨道对称性的归属.本文以如何判断SF6基态1 A_(1g)的电子组态中最高占据轨道的对称性为例来解决这个问题.针对某些文献中的SF6基态1 A1g的电子组态中,最高占据轨道对称性是T_(1g)却写成T_(2g)的问题,采用Molpro量化计算软件,对SF6基态的平衡结构,进行了HF/6-311G*计算,得到了能量三重简并的最高占据轨道的函数表达式,进而运用O_h群的对称操作作用在三个轨道函数上,得到各操作的矩阵表示,于是得到特征标,最后确定了最高占据轨道为T_(1g)对称性.  相似文献   

13.
We study many-particle diffusion in 2D colloidal suspensions with full hydrodynamic interactions through a novel mesoscopic simulation technique. We focus on the behaviour of the effective scaled tracer and collective-diffusion coefficients and , respectively, where D0 is the single-particle diffusion coefficient, as a function of the density of the colloids . At low Schmidt numbers , we find that hydrodynamics has essentially no effect on the behaviour of . At larger Sc, seems to be enhanced at all densities, although the differences compared to the case without hydrodynamics are rather minor. The collective-diffusion coefficient, on the other hand, is much more strongly coupled to hydrodynamical conservation laws and is distinctly different from the purely dissipative case without hydrodynamic interactions.Received: 20 October 2003, Published online: 23 March 2004PACS: 68.35.Fx Diffusion; interface formation - 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion - 82.20.Wt Physical chemistry and chemical physics: Computational modeling; simulation  相似文献   

14.
We present numerical simulations of the acoustic‐phonon‐limited mobility, $ \mu _{\rm ac}, $ and phonon‐drag thermopower, S^{\rm g},$ in two‐dimensional electron gases confined in MgZnO/ZnO heterostructures. The calculations are based on the Boltzmann equation and are made for temperatures in the range 0.3–20 K and sheet densities 0.5–30 × 1015 m–2. The theoretical estimations of \mu _{\rm ac} $ are in good agreement with the experiment without any adjustable parameters. We find that the magnitude of \mu _{\rm ac} $ is dramatically decreased in relation to GaAs‐based heterostructures. The phonon‐drag thermopower, S^{\rm g},$ which according to Herring's expression is inversely proportional to \mu _{\rm ac} is severely increased exceeding 200 mV/K at T = 5 K depending on sheet density. The giant values of S^{\rm g} $ lead to a strong improvement of the figure of merit ZT at low temperatures. Our findings suggest that MgZnO/ZnO heterostructures can be candidates for good thermoelectric materials at cryogenic temperatures. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Characteristic properties as well as possible differences in bonding of small group 12 clusters Mn{\rm M}_n (M = Zn{\rm M} = {\rm Zn}, Cd, Hg; n = 2, ?, 6n = 2, \ldots, 6) have been investigated by quantum chemical ab initio methods, i.e., relativistic large-core pseudopotentials, core-polarization potentials and coupled-cluster correlation treatments. A comparison of cohesive energies and spectroscopic properties like ionization potentials, electron affinities, and vibrational frequencies reveals a close similarity between the clusters of Cd and Hg. For Zn clusters we observed an exceptional increase in stability between Zn3\rm Zn_3 and Zn4\rm Zn_4. In order to get a more qualitative picture of the covalent contributions to bonding we have calculated the electron localization function (ELF). The ELF analysis is in accordance with the calculated spectroscopic properties and shows predominant van der Waals interactions with weak covalent contributions for all the cluster sizes considered.  相似文献   

16.
In this paper we studied the asymptotic eigenvalue statistics of the 2 matrix model with the probability measure
Z-1nexp(-n(tr(V(M1)+W(M2)-tM1M2))  dM1d M2,Z^{-1}_{n}{\rm exp}\left(-n\left({\rm tr}(V(M_1)+W(M_2)-\tau M_1M_2\right)\right) \, {\rm d}M_1{\rm d} M_2,  相似文献   

17.
Gas desorption in vacuum from electron irradiated ultra high molecular weight polyethylene (PE) is measured with a high sensible mass quadrupole spectrometer. Measurements are performed in thick PE irradiated with 5 MeV electron beams at doses of the order of tens of kGy. The irradiation modifies the PE molecules producing dehydrogenation, emission of different C x –H y groups, C-enrichment and carbon cross-linking processes. Results indicate that the radiation damage depends on the dose and that a significant change of chemical and physical polymer properties is reached for a critical dose of 18 kGy.  相似文献   

18.
γ射线及质子辐照导致CCD光谱响应退化的机制   总被引:1,自引:1,他引:0       下载免费PDF全文
文林  李豫东  郭旗  汪朝敏 《发光学报》2018,39(2):244-250
光谱响应是表征CCD性能的重要参数。为了研究辐射环境对CCD光谱响应产生影响的规律及物理机制,开展了不同粒子辐照实验,对CCD光谱响应曲线的退化形式及典型波长下CCD光响应的退化情况进行了分析。辐射效应对CCD光谱响应的影响可以分为电离总剂量效应和位移效应导致的退化,本文从这两种辐射效应出发,采用60Co-γ射线及质子两种辐照条件,研究了CCD光谱响应的退化规律。针对460 nm(蓝光)和700 nm(红光)等典型CCD光响应波长,从辐射效应导致的损伤缺陷方面分析了CCD光谱响应退化的物理机制。研究发现,在60Co-γ射线辐照时CCD光谱响应曲线变化是由于暗信号增加导致的,而质子辐照导致CCD对700 nm波长的光响应退化明显大于460 nm波长的光响应,且10 MeV质子导致的损伤比3 MeV质子更明显,表明位移损伤缺陷易导致CCD光谱响应退化。结果表明,电离总剂量效应主要导致CCD光谱响应整体变化,而位移效应则导致不同波长光的响应差异增大。  相似文献   

19.
Nanoparticles of magnetite Fe3O4 were synthesized by thermal reduction of hematite α-Fe2O3 powder in the presence of high boiling point solvent. The structural transformations and magnetic properties of the obtained nanoparticles were investigated by the 57Fe Mössbauer spectroscopy, X-ray diffraction, and magnetic measurements. The content of hematite and magnetite phases was evaluated at each step of the chemical and thermal treatment of the product. An increase of saturation magnetization with the reaction time correlates with an increase of concentration of magnetite in the samples. The electron hoping between Fe2?+? and Fe3?+? ions in the octahedral sites of the magnetite nanoparticles and Verwey phase transition were investigated. It was established that not all iron ions in the octahedral sites participated in electron hoping Fe2?+????Fe3?+? above the Verwey temperature T V, and the charge distribution could be expressed as $\big( {{\rm Fe}^{3+}}\big)_{{\rm tet}} \big[ {{\rm Fe}_{1.85}^{2.5+} {\rm Fe}_{0.15}^{3+} }\big]_{{\rm oct}} {\rm O}_4$ .  相似文献   

20.
刘壮  陈仁杰  李东  闫阿儒 《中国物理 B》2010,19(6):67504-067504
This paper reports that the SmCo 6.8 Zr 0.2 nanocrystalline permanent magnets and SmCo 6.8 Zr 0.2 /α-(Fe,Co) nanocomposite permanent magnets are successfully produced by mechanical alloying and subsequently annealing at 700 C for 10 minutes.The x-ray diffraction results show that the phase structure of SmCo 6.8 Zr 0.2 nanocrystalline permanent magnets is composed of SmCo 7 phase and SmCo 6.8 Zr 0.2 /α-(Fe,Co) nanocomposite permanent magnets is composed of SmCo 7 and α-(Fe,Co) phases.The mechanism of magnetization reversal is mainly controlled by inhomogeneous domain wall pinning in SmCo 6.8 Zr 0.2 and SmCo 6.8 Zr 0.2 /α-(Fe,Co) magnets.The inter-grain exchange interaction at low temperature is investigated,which shows that the inter-grain exchange interaction of SmCo 6.8 Zr 0.2 /α-(Fe,Co) magnets increases greatly by the decrease of the measured temperature.According to Δm irr-H/H cj,Δm rev-H/H cj and χ irr-H/H cj curves at room temperature and 100 K,the changes of irreversible and reversible magnetization behaviours of SmCo 6.8 Zr 0.2 and SmCo 6.8 Zr 0.2 /α-(Fe,Co) magnets with the decreasing temperature are analysed in detail.The magnetic viscosity and the activation volume of SmCo 6.8 Zr 0.2 and SmCo 6.8 Zr 0.2 /α-(Fe,Co) magnets at different temperatures are also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号