首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用子孔径拼接法测量大口径凸面反射镜   总被引:2,自引:1,他引:1       下载免费PDF全文
王孝坤 《应用光学》2013,34(1):95-100
在简要分析各种检测大口径凸球面方法优缺点的基础上,提出了利用子孔径测量凸面反射镜的新方法,利用干涉仪标准球面波前依次干涉测定大口径镜面上各个区域的相位分布,通过子孔径拼接算法即可求解得到镜面全口径面形信息。对该方法的基本原理和实现步骤进行了分析和研究,建立了大口径拼接检测算法数学模型,设计并研制了大口径反射镜拼接检验装置。结合实例对加工过程中的口径为300 mm的碳化硅凸面反射镜进行了9个子孔径的拼接干涉测量,并将检测结果与全口径面形测量结果进行对比,两种方法残差的PV值和RMS值分别为0.102 和0.009 (=632.8 nm)。  相似文献   

2.
将光学系统波像差检验技术与子孔径拼接测试技术相融合提出了凸非球面系统拼接检测方法,对该方法的原理和实现步骤进行了分析和研究,并建立了合理的子孔径拼接数学模型.依次利用计算机控制光学表面成形技术和磁流变抛光技术对一包含大口径凸非球面的离轴三反光学系统的各反射镜进行加工,并对整个系统进行装调和测试.测定光学系统各视场的波像差分布,通过综合优化子孔径拼接算法和全口径面形数据插值求解得到大口径凸非球面全口径的面形信息.结合工程实例,对一口径为292mm×183 mm的离轴非球面次镜进行了系统拼接测试和加工,其最终面形分布的均方根值为0.017λ(λ=632.8 nm).  相似文献   

3.
将光学系统波像差检验技术与子孔径拼接测试技术相融合提出了凸非球面系统拼接检测方法,对该方法的原理和实现步骤进行了分析和研究,并建立了合理的子孔径拼接数学模型.依次利用计算机控制光学表面成形技术和磁流变抛光技术对一包含大口径凸非球面的离轴三反光学系统的各反射镜进行加工,并对整个系统进行装调和测试.测定光学系统各视场的波像差分布,通过综合优化子孔径拼接算法和全口径面形数据插值求解得到大口径凸非球面全口径的面形信息.结合工程实例,对一口径为292mm×183 mm的离轴非球面次镜进行了系统拼接测试和加工,其最终面形分布的均方根值为0.017λ(λ=632.8nm).  相似文献   

4.
基于功率谱的反射镜面形评价   总被引:1,自引:0,他引:1  
杨飞  安其昌  张景旭 《中国光学》2014,7(1):156-162
针对表面高度均方根(RMS)难以描述大尺度波动以及刚体位移鲁棒性差的缺点,提出了使用功率谱(PSD)对大口径望远镜系统中主反射镜面形进行评价;结合Zernike多项式,对PSD的分解运算进行了分析,讨论了Zernike多项式的频谱能量分布;将该方法用于Φ500 mm反射镜面形检测数据的处理,得出实际反射镜表面面形频域能量分布情况。结果表明:对于大口径反射镜,使用PSD的评价方式对于指导加工检测以及望远镜系统误差的分配具有更实用的意义。最后,基于PSD提出了一种评价反射镜面形的子孔径非相关拼接方法,该方法适用于大口径望远镜中大口径光学元件的面形精度评价。  相似文献   

5.
针对表面高度均方根(RMS)难以描述大尺度波动以及刚体位移鲁棒性差的缺点,提出了使用功率谱(PSD)对大口径望远镜系统中主反射镜面形进行评价;结合Zernike多项式,对PSD的分解运算进行了分析,讨论了Zernike多项式的频谱能量分布;将该方法用于Φ500 mm反射镜面形检测数据的处理,得出实际反射镜表面面形频域能量分布情况。结果表明:对于大口径反射镜,使用PSD的评价方式对于指导加工检测以及望远镜系统误差的分配具有更实用的意义。最后,基于PSD提出了一种评价反射镜面形的子孔径非相关拼接方法,该方法适用于大口径望远镜中大口径光学元件的面形精度评价。  相似文献   

6.
刘智颖  张磊  胡原  高天元  王志坚 《应用光学》2008,29(6):1009-1012
大口径光学元件的检测开拓了子孔径拼接应用的新领域。采用小口径干涉仪对大口径被测元件不同区域进行波前检测,然后恢复计算出被测波前。使用光学设计软件ZEMAX对子孔径检测拼接技术进行了模拟,模拟结果表明:波前检测相对误差小于4.3λ‰,实现了对大口径光学元件面形的高精度检测,避免了相同口径检测干涉仪的使用,降低了检测成本及难度。  相似文献   

7.
王孝坤 《中国光学》2016,9(1):130-136
针对大口径离轴凸非球面面形检测的困难,本文将光学系统波像差检验技术与子孔径拼接干涉技术相结合,提出了凸非球面系统拼接检测方法。对该方法的基本原理和具体实现过程进行了分析和研究,并建立了合理的子孔径拼接数学模型。当离轴三反光学系统的主镜和三镜加工完成以后,对整个系统进行装调和测试,并依次测定光学系统各视场的波像差分布,通过综合优化子孔径拼接算法和全口径面形数据插值可以求解得到大口径非球面全口径的面形信息,从而为非球面后续加工和系统的装调提供了依据和保障。结合工程实例,对一口径为287 mm×115 mm的离轴非球面次镜进行了系统拼接测试和加工,经过两个周期的加工和测试,其面形分布的RMS值接近1/30λ(λ=632.8 nm)。  相似文献   

8.
子孔径拼接检测光学系统波前机械定位误差补偿算法   总被引:3,自引:0,他引:3  
汪利华  吴时彬  任戈  谭毅  杨伟 《光学学报》2012,32(1):112003-126
为了实现大口径光学系统波前子孔径拼接干涉测量,保证子孔径采样数据准确定位,提出了子孔径拼接定位补偿算法。介绍了该算法原理,分析了该算法子孔径定位误差补偿能力。首先根据被检光学系统和子孔径口径大小规划出采样子孔径布局,在子孔径采样装置机械精度误差范围内对子孔径进行拼接,根据所求子孔径定位误差补偿系数和调整误差系数,得到被检全孔径波前,完成大口径光学系统波前的拼接检测。通过仿真验证了该算法的可行性,在机械平移定位精度为1 mm和转动角定位精度为0.5°时,用该算法实验检测口径为200 mm的光学系统平面波前。检测结果表明该算法稳定可靠,能有效补偿机械精度引起的子孔径定位误差,从而可放宽对机械定位精度的要求。  相似文献   

9.
子孔径拼接干涉检测实验研究   总被引:15,自引:5,他引:10  
为了满足国内ICF系统大口径光学元件的检测需要,提出了子孔径拼接干涉检测的方法。该方法是利用小口径干涉仪对大口径光学元件进行高精度波前检测。建立了拼接检测计算的模型。利用最小二乘法计算得到拼接参数,从而恢复大口径光学元件的全孔径波前相位分布。在理论分析的基础上设计了一套检测装置,对该装置的稳定性进行了实验研究。进行了两口径拼接检测的实验。拼接结果与全孔径检测结果进行了比较。结果表明,该检测方案能够满足大口径光学元件的检测要求。  相似文献   

10.
《光学技术》2021,(1):12-16
针对Ф1.3m口径同轴四反望远镜镜头,提出了一种有效的装调方法。主镜口径为1.3m,采用背部双脚架(bipod)支撑形式。使用激光跟踪仪多边测量法对支撑结构精密定位,利用Stewart机构位置反解方法进行主镜位姿的调整;通过变换反射镜组件方位进行面形测量,提取重力作用造成的反射镜面形误差;利用Offner零位补偿检测光路进行基于干涉测量的反射镜定心,实现反射镜光学基准与镜头基准的传递;进行镜头的光轴竖直装调,采用测试镜头像高和在线标定标准镜面形的技术手段来提高装调精度与收敛速度。镜头的中心视场波前和边缘视场波前rms分别为0.053λ(λ=0.6328μm)和0.077λ。  相似文献   

11.
从惯性约束核聚变(ICF)装置中具有重要作用的大口径激光传输反射镜出发,基于中国神光-Ⅲ主机装置的工程实践,分析了大口径激光传输反射镜夹持工艺的技术现状和难点,建立了大口径反射镜受夹持力变形的通用力学模型,提出了基于挠性零件的全新低应力夹持工艺,并利用有限元仿真和现场实验相结合的方法对挠性零件的力学特性进行了工艺效果验证。基于挠性零件的特点设计了新的全口径反射镜组件,对比研究了新旧工艺下夹持力对面形畸变(波前误差)的影响。最后,结合全新反射镜组件和夹持诱导畸变数值解耦方法构建了更加高效的完整装配工艺流程。该研究对解决大口径光学元件夹持诱导变形这一难题具有重要意义,有望为建设下一代ICF装置提供更加高效、可靠的技术方案。  相似文献   

12.
提出采用摆臂式轮廓检测的方法,实现超大口径Si C反射镜面形的高精度轮廓检测。阐述了采用摆臂轮廓仪检测超大口径反射镜的基本原理和具体实施流程;介绍了基于扫描线交点高度一致性的特点进行面形重构的算法,以及针对离焦量测量不准的问题,采用激光跟踪仪对面形离焦量进行辅助测量的手段,建立了综合优化的检测模型;结合实例对口径为2040 mm的同轴抛物面Si C反射镜进行了摆臂轮廓检测,检测精度均方根(RMS)为0.46μm,与干涉仪检测结果对比偏差0.03μm。该技术与加工机床集成实现了反射镜的在位检测,以非球面的最接近球面为测量基准,提供了一种精确、高效地测量超大口径光学非球面面形的方法,满足了大口径Si C反射镜在研磨阶段的高精度轮廓检测需求。  相似文献   

13.
大口径非球面主反射镜的装调方法研究   总被引:2,自引:2,他引:0       下载免费PDF全文
韩娟  段嘉友  张钧 《应用光学》2012,33(3):490-495
针对大口径非球面主反射镜(简称主镜)的装调要求,对比分析常用大口径非球面面形检测方法,提出该类主镜检测面形的最佳方案。在主镜的装调过程中,通过对主镜的固定方式和主镜变形补偿这2个关键环节的阐述,总结主镜固定的难点及主镜变形的原因,提出一套全新的装调方案,以旋转消重力法进行检测,并用专用工装实时定心调节,再用辅料焊接法固定主镜与中心轴,最后采用辅助支撑对主镜组件进行最终固定修正。装调结果表明:对于大口径非球面反射镜,装调完成后的主镜面形精度Rms0.03(=632.8 nm)。  相似文献   

14.
针对光学反射镜在精磨向初抛光过渡阶段时面形与理想面形存在较大偏差的问题,采用轮廓仪和普通干涉仪检测无法满足加工检测需求的问题,提出采用动态范围大且准确度高的条纹反射法来检测光学反射镜.研究分析了条纹反射检测系统的原理及系统误差,运用光线追迹软件对条纹反射检测100mm口径反射镜面形进行建模仿真,并对已经加工完成的100mm口径旋转对称球面反射镜进行了检测,测量得到的面形误差峰谷值及均方根值分别为0.523μm和0.086μm,满足该过渡阶段的检测需求.  相似文献   

15.
大口径反射镜波前畸变控制技术   总被引:1,自引:0,他引:1       下载免费PDF全文
依据高功率固体激光装置对大口径反射镜附加波前畸变的严格要求,通过选择适合的结构形式、材料及连接方式和支撑位置设计了大口径反射镜支撑结构,并对其进行了优化分析计算和验证性试验。面形精度试验结果表明:装夹引入的附加波前畸变的峰谷值(PV 值)约为150 nm,小于/3(=632 nm),结构满足设计指标要求。  相似文献   

16.
刘军 《光学技术》2011,37(4):392-396
在较大孔径放大系数(>4)的情况下,结合实验结果,从拼接模式、被测面形、测量误差和不同孔径放大系数的角度出发,分析了各种因素对目标函数拼接技术精度的影响,为高精度检测和控制大口径光学元件表面面形(波前)提供了依据.  相似文献   

17.
刘丁枭  盛伟繁 《强激光与粒子束》2018,30(8):081001-1-081001-5
为了解决大口径光学元件面形高精度测量问题,建立了拼接测量系统,通过测量得到整体表面面形。在拼接测量过程中,需要将待测面形进行划分,按着一定的顺序进行测量,再根据各个子口径之间的相对位置进行拼接。各个子口径存在重叠部分,采用均化的处理方法会导致高频面形数据的丢失。采用小波变换的拼接重叠区域融合方法可以减少高频数据的丢失。首先,对各个子口径的重叠区域分别进行小波变换得到低频和高频系数矩阵;然后,根据不同的方法对低频和高频系数矩阵进行融合得到新的系数矩阵;最后,通过小波逆变换得到整体面形。对尺寸为120 mm×40 mm的长方形反射镜面形进行拼接干涉测量,并用功率谱密度对本文方法和平均融合结果进行客观比较。实验结果表明,该方法可以保留更多的高频面形数据。  相似文献   

18.
为了实现大口径椭圆形光学平面镜的高精度面形测量,提升大口径望远镜系统的像质,本文对椭圆形平面反射镜面形的绝对检测算法进行了研究。首先,对椭圆形镜面进行了多项式正交化拟合研究。接着,对绝对检测算法进行了理论研究,利用正交化绝对检测算法可以有效分离参考镜与待测镜的面形误差,从而实现待测椭圆形平面镜面的高精度面形重构。为了证明上述方法的实际检测精度,本文对250 mm×300 mm的椭圆形镜面进行了绝对检测模拟与检测实验。对参考镜面形精度不高的情况进行了仿真计算,实验中利用光阑在Zygo300 mm口径标准平面镜头中选取250 mm×300 mm椭圆形检测区域,采用150 mm口径Zygo干涉仪对上述椭圆形区域完成绝对检测,并基于上述正交化绝对检测算法对椭圆形平面镜实现了面形重构。实验结果表明,利用本文所述方法可以实现参考镜与椭圆形待测镜面的面形误差分离,绝对检测结果的残差图RMS(Root-mean square)值为0.29 nm,证明了本文所述方法的可行性。利用上述方法可以实现椭圆形平面反射镜的高精度面形重构。  相似文献   

19.
介绍一块Ф1300mmULE材料非球面反射镜的加工与检测方法。采用非球面超声铣磨、机器人研抛等多个工序组合加工技术完成了非球面反射镜的加工。在非球面检测中,采用大口径三坐标测量的方法进行了研磨阶段的面形检测,通过Z向滤波的方法对面形拟合过程中的噪点误差进行了处理,将研磨阶段的面形精度提高至5μm PV值。在干涉仪测量阶段,采用气囊支撑方法对反射镜的重力误差进行了卸载,通过非线性误差矫正的方法去除了零位补偿检测所带来的非线性误差,反射镜的最终精度达到0.016λRMS。试验结果表明,大口径非球面反射镜各项技术指标均满足设计要求,所用工艺方法适用于加工更大口径的非球面反射镜及其他类型的大口径非球面光学元件。  相似文献   

20.
郑立功 《应用光学》2014,35(1):85-89
为了解决高精度光学反射镜的子孔径拼接检测问题,基于最小二乘拟合,依据拼接算法建立数学模型,编制了拼接程序,同时对口径为120 mm的平面反射镜进行了拼接检测。检测中,基于标记点确定子孔径间的相对位置,完成子孔径间的对准。分别基于全口径检测结果与自检验子孔径测试结果对拼接结果进行精度分析。实验结果表明:拼接结果无拼痕,拼接结果与全口径测试结果、自检验子孔径测试结果一致; 拼接结果与全口径面形测试的PV值与RMS值的偏差分别为0.020 与0.002 ,验证了检测的可靠性和准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号