首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   5篇
数学   1篇
物理学   20篇
  2022年   2篇
  2020年   1篇
  2016年   2篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   2篇
  2009年   1篇
  2007年   3篇
  2006年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
王孝坤 《中国光学》2016,9(1):130-136
针对大口径离轴凸非球面面形检测的困难,本文将光学系统波像差检验技术与子孔径拼接干涉技术相结合,提出了凸非球面系统拼接检测方法。对该方法的基本原理和具体实现过程进行了分析和研究,并建立了合理的子孔径拼接数学模型。当离轴三反光学系统的主镜和三镜加工完成以后,对整个系统进行装调和测试,并依次测定光学系统各视场的波像差分布,通过综合优化子孔径拼接算法和全口径面形数据插值可以求解得到大口径非球面全口径的面形信息,从而为非球面后续加工和系统的装调提供了依据和保障。结合工程实例,对一口径为287 mm×115 mm的离轴非球面次镜进行了系统拼接测试和加工,经过两个周期的加工和测试,其面形分布的RMS值接近1/30λ(λ=632.8 nm)。  相似文献   
2.
将光学系统波像差检验技术与子孔径拼接测试技术相融合提出了凸非球面系统拼接检测方法,对该方法的原理和实现步骤进行了分析和研究,并建立了合理的子孔径拼接数学模型.依次利用计算机控制光学表面成形技术和磁流变抛光技术对一包含大口径凸非球面的离轴三反光学系统的各反射镜进行加工,并对整个系统进行装调和测试.测定光学系统各视场的波像差分布,通过综合优化子孔径拼接算法和全口径面形数据插值求解得到大口径凸非球面全口径的面形信息.结合工程实例,对一口径为292mm×183 mm的离轴非球面次镜进行了系统拼接测试和加工,其最终面形分布的均方根值为0.017λ(λ=632.8 nm).  相似文献   
3.
非零位检测凸非球面反射镜的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王孝坤 《应用光学》2012,33(1):124-128
 在简要总结各种检测凸非球面方法优缺点的基础上,提出了利用部分补偿法和子孔径拼接干涉检测凸非球面的新方法。分别研究和分析了这两种非零位检测非球面方法的基本原理和基础理论;设计并制作了部分补偿器件,并对其系统误差进行了标定;开发了综合优化和误差均化的子孔径拼接算法;设计并研制了两种方法都适用的检测装置。并结合实例对一口径为130 mm的碳化硅凸非球面分别进行了部分补偿检测和子孔径拼接测量,这两种方法测量所得的全口径面形分布是一致的,其PV值和RMS值的偏差仅为0.010 λ和 0.002 λ(λ=0.632 8 μm)。从而提供了两种非零位补偿测试凸非球面的手段。  相似文献   
4.
一种精确测量光学球面曲率半径的方法   总被引:3,自引:0,他引:3  
在简要总结各种检测光学球面曲率半径方法优缺点的基础上,提出了利用激光跟踪仪和激光干涉仪测量光学球面曲率半径的新方法。首先,通过激光跟踪仪精确定位测量干涉仪出射球面波前的焦点和待测球面镜的曲率中心点坐标,再调整待测球面镜与干涉仪的相对位置,使待测球面镜达到零条纹干涉状态,用激光跟踪仪测定此时待测球面镜上多点的位置坐标,通过计算分析即可得到待测球面镜的曲率半径。研究和分析了这种测量光学球面曲率半径方法的基本原理,并提出了针对凸球面镜曲率半径的多区域测定平均综合优化的方法。结合实例对一口径为400mm的球面透镜进行了曲率半径的测量,测量得到其两面曲率半径分别为1022.283mm(凸面)和4069.568mm(凹面),并将该透镜进行了轮廓法测量对比,其相对误差都小于0.05%。  相似文献   
5.
子孔径拼接干涉检测离轴非球面研究   总被引:1,自引:1,他引:0  
将子孔径拼接技术与干涉技术相结合提出了一种新的检测离轴非球面的方法,该方法无需其他辅助光学元件就可以实现对大口径、离轴非球面的测量.对其基本原理进行了分析和研究;并基于齐次坐标变换、最小二乘拟合建立了综合优化和误差均化的拼接数学模型;开发了子孔径拼接检测非球面的算法软件,并设计和搭建了子孔径拼接干涉检测装置;利用综合优...  相似文献   
6.
王孝坤  张学军 《光学技术》2006,32(5):673-677
使用子孔径拼接技术可以无需补偿器、大口径的辅助镜、全息图等辅助元件实现对大口径、大偏离量、高陡度非球面甚至离轴非球面的检验,而且可以同时获得中高频的相位信息,大大地提高了测量精度,降低了成本。在总结了常用检测非球面方法优缺点的基础上提出了利用圆形子孔径、环形子孔径检测非球面的基本原理,并对其步骤的实现、数学模型的建立和拼接算法的开发进行了分析和研究。结果表明,子孔径拼接检测技术可以作为补偿检验以外的另一种定量测试非球面的手段,可以和其它检测方法相互验证,从而确保检测的准确性和可靠性。  相似文献   
7.
 为了能够精确地完成对大口径高陡度非球面在细磨和抛光过程中的测量,提出了一种将子孔径拼接技术和补偿技术相结合的检测方法。介绍了该方法的基本原理,建立了合理的数学模型,编制了拼接计算软件。利用该方法对一外形尺寸为400 mm×300 mm的高次离轴非球面进行了测试,通过最小二乘法拟合消去各子孔径相对基准子孔径的调整误差以及整个系统的装调定位误差,得到了准确的全孔径面形分布。对实验精度和误差来源进行了分析,并将拼接面形与全孔径测量面形相对比,二者是一致的。  相似文献   
8.
快递需求量的准确预测是区域快递行业合理布局的重要依据.在明确区域快递需求量衡量指标的前提下,针对其预测方法单一、适用范围局限等问题,提出构建基于灰色GM(1,1)预测模型、一元线性回归分析预测模型和趋势平均法预测模型的标准差法组合预测模型.以大连市为例,选取大连市快递量作为预测指标,预测结果表明,标准差法组合预测模型的预测结果最为准确,其平均相对误差为3.04%.所建立的模型为区域快递需求量预测工作提供参考.  相似文献   
9.
单光楔补偿检测法具有良好的适用性、鲁棒性和灵活性,但是在检测光路中存在多种误差耦合,误差解耦困难,影响了单光楔补偿检测的精度和可信度。针对这一问题,本文提出一种计算全息法(Computer Generation Hologram,CGH)标定单光楔补偿检测光路系统误差的新方法。文中首先分析了单光楔补偿检测法系统误差的来源,并对CGH标定光楔补偿器的可行性进行了分析。结合工程实例,对口径为150 mm的单光楔补偿器设计了CGH,经分析可得CGH的标定精度为1.98 nm RMS,CGH标定后单光楔补偿检测精度为3.43 nm RMS,该精度能够满足大口径凸非球面反射镜的高精度检测要求。结果表明:CGH可以准确标定单光楔补偿器的位姿和检测光路的系统误差,解决了检测光路中误差解耦困难的问题,提高了单光楔补偿检测的准确性和可靠性。使用CGH标定得到Tap#2和Tap#3的检测光路系统误差分别为0.023λRMS和0.011λRMS。  相似文献   
10.
In order to test convex aspheric surfaces without the aid of other null optics, a novel method combined sub-aperture stitching and interferometry called SSI (sub-aperture stitching interferometry) is introduced. In this letter, the theory, basic principle, and flow chart of SSI are researched. A synthetical optimization stitching mode and an effective stitching algorithm are established based on homogeneous coordinate's transformation and simultaneous least-squares fitting. The software of SSI is devised, and the prototype for testing of large aspheres by SSI is designed and developed. The experiment is carried out with five sub- apertures for a convex silicon carbide (SIC) aspheric mirror with a clear aperture of 130 ram. The peak-to- valley (PV) and root-mean-square (RMS) error are 0.186 λand 0.019 λ, respectively. For the comparison and validation, the TMA system which contained the convex asphere is tested by interferometry. The wavefront error of the central field of the optical system is 0.068 λRMS which approaches to diffraction limitation. The results conclude that this technique is feasible and accurate. It enables the non-null testing of aspheric surfaces especially for convex aspheres.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号