首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The new ligand 4-(isopropylbenzaldehyde)imidazo[4,5-f ][1,10]phenanthroline (ippip) and its complexes [Ru(phen)2(ippip)]2+(1),[Co(phen)2(ippip)]3+(2),[Ru(bpy)2(ippip)]2+(3),[Co(bpy)2(ippip)]3+(4)(bpy=2,2-bipyridine) and (phen=1,10-phenanthroline) were synthesized and characterized by ES+-MS, 1H and 13C NMR. The DNA binding properties of the four complexes were investigated by different spectrophotometric methods and viscosity measurements. The results suggest that complexes bind to calf thymus DNA (CT-DNA) through intercalation. When irradiated at 365 nm, the complexes promote the photocleavage of pBR322 DNA, and complex 1 cleaves DNA more effectively than 2, 3, 4 complexes under comparable experimental conditions. Furthermore, photocleavage studies reveal that singlet oxygen (1O2) plays a significant role in the photocleavage.  相似文献   

2.

A new ligand FIPB?=?5-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)furan-2-yl-2-boronic acid, having three cobalt(III) polypyridyl complexes [Co(phen)2(FIPB)]3+(1) {FIPB?=?5-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)furan-2-yl-2-boronic acid}, (phen?=?1,10-Phenanthroline), [Co(bpy)2(FIPB)]3+(2) (bpy?=?2,2’bipyridyl), [Co(dmb)2(FIPB)]3+(3) (dmb?=?4, 4′-dimethyl 2, 2′-bipyridine) have been synthesized and characterized by elemental analysis, ES-MS,1H-NMR, 13C-NMR, UV-Vis and FTIR. Their DNA binding behavior has been explored by various spectroscopic titrations and viscosity measurements, which indicated that all the complexes bind to calf thymus DNA by means of intercalation with different binding strengths. The binding properties of these all three complexes towards calf-thymus DNA (CT-DNA) have been investigated by UV-visible, emission spectroscopy and viscosity measurements.The experimental results suggested that three Co(III) complexes can intercalate into DNA base pairs,but with different binding affinities. Photo induced DNA cleavage studies have been performed and results indicate that three complexes efficiently cleave the pBR322-DNA in different forms. The three synthesized compounds were tested for antimicrobial activity by using Staphylococcus aureus and Bacillus subtilis organisms, these results indicated that complex 1 was more activity compared to other two complexes against both tested microbial strains. The in vitro cytotoxicity of these complexes was evaluatedby MTT assay, and complex 1 shows higher cytotoxicity than complex 2 and 3 on HeLa cells.

  相似文献   

3.
Electronic structures of binuclear ruthenium complexes [Ru2(terpy)2(tppz)]4+ ( 1A ) and [Ru2Cl2(L)2(tppz)]2+ {L = bpy ( 2A ), phen ( 3A ), and dpphen ( 4A )} were studied by density functional theory calculations. Abbreviations of the ligands (Ls) are bpy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline, dpphen = 4,7‐diphenyl‐1,10‐phenanthroline, terpy = 2,2′:6′,2″‐terpyridine, and tppz = tetrakis(2‐pyridyl)pyrazine. Their mononuclear reference complexes [Ru(terpy)2]2+ ( 1B ) and [RuClL(terpy)]+ {L = bpy ( 2B ), phen ( 3B ), and dpphen ( 4B )} were also examined. Geometries of these mononuclear and binuclear Ru(II) complexes were fully optimized. Their geometric parameters are in good agreement with the experimental data. The binuclear complexes were characterized by electrospray ionization mass spectrometry, UV–Vis spectroscopy, and cyclic voltammograms. Hexafluorophosphate salts of binuclear ruthenium complexes of 3A and 4A were newly prepared. The crystal structure of binuclear complex 1A (PF6)4 was also determined. Orbital interactions were analyzed to characterize the metal‐to‐ligand charge‐transfer (MLCT) states in these complexes. The Cl? ligand works to raise the orbital energy of the metal lone pair, which leads to the low MLCT state. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The three Ru(II) complexes of [Ru(phen)2dppca]2+ (1) [Ru(bpy)2dppca]2+ (2) and [Ru(dmb)2dppca]2+ (3) (where phen = 1,10 phenanthroline, bpy = 2,2-bipyridine, dmb = 2 ,2-dimethyl 2′,2′-bipyridine and polypyridyl ligand containing a single carboxylate functionality dppca ligand (dipyridophenazine-11-carboxylic acid) have been synthesized and characterized. These complexes have been shown to act as promising calf thymus DNA intercalators and a new class of DNA light switches, as evidenced by UV-visible and luminescence titrations with Co2+ and EDTA, steady-state emission quenching by [Fe(CN)6]4− and KI, DNA competitive binding with ethidium bromide, viscosity measurements, and DNA melting experiments. The results suggest that 1, 2, and 3 complexes bind to CT-DNA through intercalation and follows the order 1 > 2 > 3. Under irradiation at 365 nm, the three complexes have also been found to promote the photocleavage of plasmid pBR322 DNA.  相似文献   

5.
Three ruthenium(II) polypyridyl complexes, [Ru(phen)2(mip)](ClO4)2 (1) (phen =1,10-Phenanthroline), [Ru(bpy)2(mip)](ClO4)2 (2) (bpy = 2,2’bipyridyl) and [Ru(dmb)2(mip)](ClO4)2 (3) (dmb = 4, 4′-dimethyl 2, 2′-bipyridine), were synthesized with an intercalative ligand mip (2-morpholino-1H-imidazo[4,5-f][1, 10]phenanthroline) and characterized by 1H, 13C–NMR, IR, UV-vis, mass spectra and elemental analysis. pH effect, ion selectivity (cations, anions) and solvent sensitivity of complexes were studied. The interaction of these complexes with DNA was performed using absorption, emission spectroscopy and viscosity measurements. The experimental results indicated that the two complexes interacted with calf thymus DNA (CT-DNA) by intercalative mode. BSA (Bovine Serum Albumin) protein binding of these complexes was studied by UV-visible and fluorescence techniques. The binding capacity of these complexes was explained theoretically by molecular docking method.  相似文献   

6.
The novel ligand (dmbip) 2-(4-N, N-dimethylbenzenamine)1H-imidazo[4, 5-f][1, 10]phenanthroline and its complexes [Ru(phen)2dmbip]2+ (1), [Ru(bpy)2dmbip]2+ (2), [Co(phen)2dmbip]3+ (3) and [Co(bpy)2dmbip]3+ (4) [where phen?=?1, 10-phenanthroline, bpy?=?2, 2-bipyridine], have been synthesized and characterized by elemental analysis, IR, UV-Vis, 1H NMR, 13C NMR and Mass spectra. The DNA binding properties of the complexes were investigated by absorption, emission, quenching studies, light switch “on and off”, salt dependent, sensor (cation and anion) studies, viscosity measurements, cyclic voltammetry, molecular modeling and docking studies. The four complexes were screened for Photo cleavage of pBR322 DNA, antimicrobial activity and cytotoxicity. The experimental results indicate that the four complexes can intercalate into DNA base pairs. The DNA-binding affinities of these complexes follow the order [Ru(phen)2dmbip]2+ > [Co(phen)2dmbip]3+ > [Ru(bpy)2dmbip]2+ > [Co(bpy)2dmbip]3+.  相似文献   

7.
A new ligand 3-(1H-imidazo[4,5-f][1,10]phenanthrolin-2yl)phenylboronic acid and its (IPPBA) three ruthenium(II) complexes [Ru(phen)2(IPPBA)](ClO4)2 (1), [Ru(bpy)2(IPPBA)](ClO4)2 (2) and [Ru(dmb)2(IPPBA)](ClO4)2 (3) have been synthesized and characterized by elemental analysis, UV/VIS, IR, 1H-NMR,13C-NMR and mass spectra. The binding behaviors of the three complexes to calf thymus DNA were investigated by absorption spectra, emission spectroscopy, viscosity measurements, thermal denaturation and photoactivated cleavage. The DNA-binding constants for complexes 1, 2 and 3 have been determined to be 7.9?×?105 M?1, 6.7?×?105 M?1 and 2.9?×?105 M?1. The results suggest that these complexes bound to double-stranded DNA in an intercalation mode. Upon irradiation at 365 nm, three ruthenium complexes were found to promote the cleavage of plasmid pBR322 DNA from super coiled form ? to nicked form ??. Further in the presence of Co2+, the emission of DNA–Ru(ΙΙ) complexes can be quenched. And when EDTA was added, the emission was recovered. The experimental results show that all three complexes exhibited the “on–off–on” properties of molecular “light switch”. The highest Cytotoxicity potential of the complex1 was observed on the Human alveolar adenocarcinoma (A549) cell line. Good agreement was generally found between the spectroscopic techniques and molecular docked model which provides further evidence of groove binding.  相似文献   

8.
The transient luminescence of three kinds of ruthenium complexes [Ru(bpy)2(7-CH3-dppz)]2+, [Ru(bpy)2(7-F-dppz)]2+ and [Ru(phen)2(7-F-dppz)]2+ bound to calf thymus DNA (ctDNA) has been studied by using the time-resolved spectroscopy. The results show that the luminescence is due to the radiative decay from the charge-transfer states to the ground state. By the interaction with DNA, the radiativeless rate of the photoexcited Ru complex molecules decreases, which results in the increase of luminescence lifetime and efficiency. The structure of the Ru complex has an important impact on the interaction with DNA. The [Ru(bpy)2(7-CH3-dppz)]2+ shows the longest luminescence lifetime (about 382 ns), while the [Ru(bpy)2(7-F-dppz)]2+ shows the shortest lifetime (about 65 ns). The possible origin of the luminescence dynamics is discussed. Supported by the National Natural Science Foundation of China (Grant Nos. 60478013 and 20571089), the Key Program of Natural Science Foundation of Guangdong Province of China (Grant No. 05101819), the Doctoral Program Foundation of Institutions of Higher Education of China (Grant No. 20040558031) and the Scientific Research Foundation of Maoming College (Grant No. 203346)  相似文献   

9.
The preparation and oxygen sensing properties of optical materials based on two trinuclear starburst ruthenium(II) complexes: [Ru3(bpy)6(TMMB)]6+ (1) and [Ru3(phen)6(TMMB)]6+ (2) (bpy=2,2′-bpyridine, phen=1,10-phenathroline, TMMB=1,3,5-tris[2-(2′-pyridyl)benzimidazoyl]methylbenzene) assembled in two mesoporous silicate (MS) are described in this paper. The luminescence of Ru complexes/silicate assemble materials can be quenched by molecular oxygen with good sensitivity (I0/I1>5 for 2/MS and I0/I1>3 for 1/MS), indicating that trinuclear starburst Ru(II) complexes/MS systems are sensitive to oxygen molecules.  相似文献   

10.

Mononuclear Ru(II)Polypyridyl complexes of type [Ru(A)2BPIIP] (ClO4)2.2H2O, where BPIIP?=?2-(3-(4-bromophenyl)isoxazole-5-yl)-1 H-imidazo [4,5-f] [1, 10] phenanthroline and A?=?bpy?=?bipyridyl (1), phen?=?1,10 Phenanthroline (2), dmb?=?4, 4' -dimethyl 2, 2'- bipyridine (3) & dmp?=?4,4'-dimethyl-1,10 –Ortho Phenanthroline (4), were synthesized and their antibacterial activity were examined. The synthesized complexes were characterized and their interaction with DNA was studied using Computational and Biophysical methods (Absorption, emission methods, and viscosity). Molecular modelling studies were carried out for molecular geometry and electronic properties (Frontier molecular orbital HOMO—LUMO). The electrostatic potential surface contours for the complexes were analysed to give their nucleophilic level of sensitivity. The study reveals that the Ru(II) Polypyridyl complexes bind to DNA preponderantly by intercalation. The results recommend that the phen and dmp complex have more effective binding ability than the bpy and dmb, indicating the role of the ancillary ligand in determining their specificity for DNA binding. Further molecular docking studies suggested an octahedral geometry and bind to DNA by preferential binding to Guanine. The docking study additionally sustains the binding constant data acquired with the absorption and emission techniques.The results reveal that the nature of the ancillary Ligand plays a considerable role for the intercalation of the Ru(II) polypyridyl complex to DNA, which subsequently influences the antibacterial activity. Biological studies conducted on Gram‐Negative (E.coli and K.pneumonia) and Gram-Positive (S. aureus and E. faecalis) bacteria establish that complex 1 and 2 were considerably active against S. aureus and E. coli.

  相似文献   

11.
The metal-ligand complexes, [Ru(bpy)2(dppz)]2+ (bpy = 2,2??-bipyridine, dppz = dipyrido[3,2-a:2??,3??-c]phenazine) (RuBD) and [Ru(phen)2(dppz)]2+ (phen = 1,10-phenanthroline) (RuPD), display favorable photophysical properties including long lifetime, polarized emission, and very little background fluorescence. To check if RuBD and RuPD reflect the overall rotational mobility of small nucleic acid, we measured the intensity and anisotropy decays of RuBD and RuPD when intercalated into tRNAtyr using pBC SK(+) phagemid as a control. We used frequency-domain fluorometry with a blue light-emitting diode (LED) as the modulated light source. We observed shorter lifetimes for tRNAtyr than those for the pBC SK(+) phagemid for both probes, however, RuPD showed much larger decrease in the mean lifetime values (64%). The slow rotational correlation time of RuBD (31.3 ns) and the fast rotational correlation time of RuPD (26.0 ns) reflected the overall rotational mobility of tRNAtyr. In addition, the steady-state anisotropy and time-resolved anisotropy decay data showed a clear difference between tRNAtyr and pBC SK(+) phagemid. This suggests the possibility of a homogeneous assay for identifying target nucleic acids and/or nucleic acid binding proteins.  相似文献   

12.
The paper reports Time Dependent Density Functional Theory (TD DFT) calculations providing the structure, electronic properties and spectra of [Ru(II)(bpy)3? n (dcbpy) n ]2+ and [Rh(III)(bpy)3? n (dcbpy) n ]3+ complexes, where bpy?=?2,2′-bipyridyl, dcbpy?=?4,4′-dicarboxy-2,2′-bipyridyl, and n?=?0,?1,?2,?3, studied as possible pigments for dye-sensitized solar cells. The role of the metallic ion and of the COOH groups on the optical properties of these complexes are compared and contrasted and their relevance as dyes for hybrid organic–inorganic photovoltaic cells is discussed. It was found that the optical spectra are strongly influenced by the metallic ion, with visible absorption bands for the Ru(II) complexes and only ultraviolet bands for the Rh(III) complexes. Upon excitation, the extra positive charge of the Rh3+ centre tends to draw electrons towards the metal ion, facilitating some charge transfer from the ligand to the metal, whereas in the case of the Ru2+ ion the electron transfer is clearly from the metal to the ligand. The carboxyl groups play an important role in strengthening the absorption bands in solution in the visible region. Of the complexes studied, the most suited as pigments for dye-sensitized solar cells are the [Ru(II)(bpy)3? n (dcbpy) n ]2+ complexes with n?=?1 and 2. This is based on the following arguments: (i) their intense absorption band in the visible region, (ii) the presence of the anchoring groups allowing the bonding to the TiO2 substrate and the charge transfer, and (iii) the good energy level alignment with the conduction band edge of the semiconducting substrate and the redox level of the electrolyte.  相似文献   

13.
The photoluminescence properties of three Tb(III) complexes of the form [Tb2(fod)6(μ-bpm)], [Tb(fod)3(phen)] and [Tb(fod)3(bpy)] and optical absorption properties of their Ho(III) analogues (fod=anion of 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione, bpm=2,2′-bipyrimidine, phen=1,10-phenanthroline and bpy=2,2′-bipyridyl) in a series of solvents are presented. The luminescence of the complexes is sensitive to changes in environment (ligand/solvent) around Tb(III) and co-sensitization of the ancillary ligands. The enhancement of the luminescence intensity in coordinating solvents is attributed to the transformation of eight-coordination into less symmetric nine-coordination structure around Tb(III). Among phen and bpy, the phen is better co-sensitizer while bpm has been observed as poor co-sensitizer. The enhancement of the oscillator strength of 5G65I8 hypersensitive transition in the 4f-4f absorption in some coordinating solvents is attributed to decrease in the symmetry of the field around Ho(III) ion. The [Ho(fod)3(phen)] is inert towards the solvents and retains its bulk structure and composition in solution. The transformation of the holmium complexes in DMSO into [Ho(fod)3(DMSO)2] species is found. The results reveal that the luminescence and 4f-4f absorption properties of lanthanide complexes in solution can be modulated by tuning the coordination structure through ancillary ligands and donor solvents.  相似文献   

14.
以三种新合成的钌配合物[Ru(bpy)2(7-CH3-dppz)]2+、[Ru(bpy)2(7-F-dppz)]2+、[Ru(phen)2(7-F-dppz)]2+为研究对象,采用时间分辨的荧光光谱技术分别测量了这三种钌配合物与小牛胸腺DNA相互作用时的瞬态荧光动力学过程。结果表明:[Ru(bpy)2(7-CH3-dppz)]2+的发光寿命最长(约382 ns),而[Ru(bpy)2(7-F-dppz)]2+的发光寿命最短(约65 ns)。分析表明:钌配合物的发光来源于配合物分子中的电荷转移态到基态的辐射跃迁。通过钌配合物与DNA的相互作用,使得配合物激发态分子的无辐射弛豫几率减小,从而导致发光寿命的增加。配合物的分子与DNA相互作用越强,激发态分子的无辐射弛豫几率越小,发光寿命也越长,最终导致高的发光效率。配合物的分子结构对配合物的分子与DNA的相互作用具有重要的影响。  相似文献   

15.
The results of our investigation on the sensitized luminescence properties of three Eu(III) ??-diketonate complexes of the form [Eu2(fod)6(??-bpm)], [Eu(fod)3(phen)] and [Eu(fod)3(bpy)] and 4f?C4f absorption properties of their Er(III) analogues ( fod = anion of 6,6,7,7,8,8,8- heptafluoro-2,2-dimethyl-3,5-octanedione, bpm = 2,2??-bipyrimidine, phen = 1,10-phenanthroline and bpy = 2,2??-bipyridyl) in a series of non-aqueous solvents are presented. The Eu(III) complexes are highly luminescent and their luminescence properties (intensity and band shape) are sensitive to the changes in the inner coordination sphere of the Eu(III) ion. The luminescence intensity of the mononuclear complexes in pyridine is drastically decreased. The coordination structure of the complexes in pyridine is transformed into a more symmetrical one which results into a slow radiative rate of the emission from the complexes. The ancillary ligands, phen and bpy are found better co-sensitizers as compared to the bpm to sensitize Eu(III)-luminescence. The 4f?C4f absorption properties (oscillator strength and band shape) of the Er(III) complexes demonstrate that 4G11/2 ?? 4I11/2 and 2H11/2 ?? 4I15/2 hypersensitive transitions of Er(III) are very sensitive in some coordinating solvents which reflects complex?Csolvent interaction in solution. The hypersensitive transitions of [Er(fod)3(phen)] remain unaffected in any of the solvents and this complex retains its bulk composition in solution. The erbium complexes as well as the Er(fod)3 chelate are invaded by DMSO. This solvent enters the inner coordination sphere by replacing heterocyclic ligand and the complexes acquire similar structure [Er(fod)3(DMSO)2] in this solvent. The results reveal that the luminescence and absorption properties of lanthanide complexes in solution can be controlled by tuning the coordination structure through ancillary ligands and donor solvents. This work shall prove useful in designing new biological applications with such probes.  相似文献   

16.
Four new bis-cyclometalated iridium(III) complexes, [Ir(btq) 2phen] [PF6] (3a), [Ir(btq) 2bpy] [PF6] (3b), [Ir(btq) 2dtbipy] [PF6] (3c) and [Ir(btq) 2pic] (3d) (btq?=?1-(benzo[b] thiophen-2-yl) isoquinoline, phen?=?1,10-phenanthroline, bpy?=?2,2′-bipyridine, dtbipy?=?4,4′-di-tert-butyl-2,2′-bipyridine, pic?=?picolinic acid) have been synthesized and fully characterized. The crystal structure of 3a has been determined by X-ray analysis. The photophysical and electrochemical properties of these new complexes 3a???3d have been studied. The photoluminescence spectra of all Ir(III) complexes exhibit deep-red emission maxima at 682, 682, 683 and 698 nm, respectively. The most representative molecular orbital energy-level diagrams and the lowest energy electronic transitions of 3a???3d have been calculated with density functional theory (DFT) and time-dependent DFT (TD???DFT). The results show that the pic ancillary ligand of complex 3d influences the absorption and emission energies with a further red-shift relative to other three complexes 3a???3c.  相似文献   

17.
The luminescence spectra of cis-[Ru(bpy)2(L)Cl]+ (bpy is 2,2′-bipyridyl; L is pyrazine, pyridine, 4-amino-pyridine, 4-picolin, isonicotinamide, 4-cyanopyridine, or 4,4′bipyridyl) complexes are studied in alcoholic (4: 1 EtOH-MeOH) solutions at 77 K. A linear correlation is found between the energy of the lowest electronically excited metal-to-ligand charge transfer (3MLCT) state d π(Ru) → π* (bpy) and the parameter pK a of the free 4-substituted pyridines and pyrazine used as ligands L. The [B3LYP/6-31G + LanL2DZ(Ru)] hybrid method of the density functional theory is used to optimize the geometry of complexes and calculate their electronic structure and the charge distribution on the atoms of the nearest environment of the ruthenium ion. It is shown that there exists a linear unambiguous correlation between the negative charge on the nitrogen atom (qN L) of ligands L coordinated in the complex and the parameters pK a of free ligands. The calculated energies of 3MLCT excited states almost linearly (correlation coefficient 0.958) depend on the charge qN L, which completely agrees with experimental data.  相似文献   

18.
Two novel, mixed ligand complexes of cobalt(III) and nickel(II), [Co(phen)2(taptp)]3+ (1) and [Ni(phen)2(taptp)]2+ (2) (phen = 1,10-phenanthroline and taptp = 4,5,9,18-tetraazaphenanthreno [9,10-b]triphenylene), were synthesized and characterized by elemental analyses, UV-visible and NMR spectroscopies. The binding interactions of the two complexes with DNA have been investigated using absorption and emission spectroscopy methods and electrophoresis measurement mode. The intrinsic binding constants for these complexes to DNA are in the order of 105. In Tris buffer, the Co(III) complex shows a moderate luminescence which was enhanced after binding to DNA. However for complex Ni(II), no emission was observed in Tris buffer. The [Co(phen)2(taptp)]3+ and [Ni(phen)2(taptp)]2+ can cause the photocleavage of DNA supercoiled pBR322 upon irradiation by 360 nm light. Based on the data, an intercalative mode of DNA binding is suggested for the two complexes.  相似文献   

19.
The absorption, luminescence, and luminescence excitation spectra of ruthenium(II) complexes cis-[Ru(bpy)2(L)Cl]+[bpy=2,2′-bipyridyl; L=NH3, pyrazine, pyridine, 4-aminopyridine, 4-picoline, isonicotinamide, 4-cyanopyridine, 4,4′-bipyridyl, or trans-1,2-bis(4-pyridyl)ethylene] in alcoholic (4: 1 EtOH-MeOH) solutions are studied. At 77 K, the quantum yields and decay times of the luminescence of the complexes are measured and the deactivation rate constants of the lowest electronically excited metal-to-ligand charge transfer state (3MLCT) are determined. The linear correlation between the energy of the lowest state 3MLCT d π(Ru)>π*(bpy) of the cis-[Ru(bpy)2(L)Cl]+ complexes and the parameter pKa of the free 4-substituted pyridines and pyrazine used as ligands is established.  相似文献   

20.
The luminescence, absorption, and luminescence excitation spectra of complexes cis-[Ru(bpy)2(L)(NO2)]+ [bpy = 2,2′-bipyridyl, L = pyridine, 4-aminopyridine, 4-dimethylaminopyridine, 4-picoline, isonicotinamide, or 4,4′-bipyridyl] in alcoholic (4 : 1 EtOH–MeOH) solutions are studied at 77 K. A linear correlation is established between the energy of the lowest electronically excited metal-toligand charge transfer state dπ(Ru) → π*(bpy) of the complexes and the pKa parameter of the free 4-substituted pyridines used as ligands L. The B3LYP/[6-31G(d)+LanL2DZ(Ru)] hybrid density functional method is used to optimize the geometry of complexes and calculate their electronic structure and the charge distribution on the atoms of the nearest environment of ruthenium(II) ions. It is shown that there exists a mutually unambiguous correspondence between the charge on the nitrogen atom of ligands L coordinated in the complex and the pKa parameter of ligands. The calculated energies of the electronically excited metal-to-ligand charge transfer states of complexes linearly (correlation coefficient 0.99) depend on the charge on the nitrogen atom of ligands L, which completely agrees with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号