首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   2篇
物理学   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.

Mononuclear Ru(II)Polypyridyl complexes of type [Ru(A)2BPIIP] (ClO4)2.2H2O, where BPIIP?=?2-(3-(4-bromophenyl)isoxazole-5-yl)-1 H-imidazo [4,5-f] [1, 10] phenanthroline and A?=?bpy?=?bipyridyl (1), phen?=?1,10 Phenanthroline (2), dmb?=?4, 4' -dimethyl 2, 2'- bipyridine (3) & dmp?=?4,4'-dimethyl-1,10 –Ortho Phenanthroline (4), were synthesized and their antibacterial activity were examined. The synthesized complexes were characterized and their interaction with DNA was studied using Computational and Biophysical methods (Absorption, emission methods, and viscosity). Molecular modelling studies were carried out for molecular geometry and electronic properties (Frontier molecular orbital HOMO—LUMO). The electrostatic potential surface contours for the complexes were analysed to give their nucleophilic level of sensitivity. The study reveals that the Ru(II) Polypyridyl complexes bind to DNA preponderantly by intercalation. The results recommend that the phen and dmp complex have more effective binding ability than the bpy and dmb, indicating the role of the ancillary ligand in determining their specificity for DNA binding. Further molecular docking studies suggested an octahedral geometry and bind to DNA by preferential binding to Guanine. The docking study additionally sustains the binding constant data acquired with the absorption and emission techniques.The results reveal that the nature of the ancillary Ligand plays a considerable role for the intercalation of the Ru(II) polypyridyl complex to DNA, which subsequently influences the antibacterial activity. Biological studies conducted on Gram‐Negative (E.coli and K.pneumonia) and Gram-Positive (S. aureus and E. faecalis) bacteria establish that complex 1 and 2 were considerably active against S. aureus and E. coli.

  相似文献   
2.

A new ligand FIPB?=?5-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)furan-2-yl-2-boronic acid, having three cobalt(III) polypyridyl complexes [Co(phen)2(FIPB)]3+(1) {FIPB?=?5-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)furan-2-yl-2-boronic acid}, (phen?=?1,10-Phenanthroline), [Co(bpy)2(FIPB)]3+(2) (bpy?=?2,2’bipyridyl), [Co(dmb)2(FIPB)]3+(3) (dmb?=?4, 4′-dimethyl 2, 2′-bipyridine) have been synthesized and characterized by elemental analysis, ES-MS,1H-NMR, 13C-NMR, UV-Vis and FTIR. Their DNA binding behavior has been explored by various spectroscopic titrations and viscosity measurements, which indicated that all the complexes bind to calf thymus DNA by means of intercalation with different binding strengths. The binding properties of these all three complexes towards calf-thymus DNA (CT-DNA) have been investigated by UV-visible, emission spectroscopy and viscosity measurements.The experimental results suggested that three Co(III) complexes can intercalate into DNA base pairs,but with different binding affinities. Photo induced DNA cleavage studies have been performed and results indicate that three complexes efficiently cleave the pBR322-DNA in different forms. The three synthesized compounds were tested for antimicrobial activity by using Staphylococcus aureus and Bacillus subtilis organisms, these results indicated that complex 1 was more activity compared to other two complexes against both tested microbial strains. The in vitro cytotoxicity of these complexes was evaluatedby MTT assay, and complex 1 shows higher cytotoxicity than complex 2 and 3 on HeLa cells.

  相似文献   
3.
Three ruthenium(II) polypyridyl complexes, [Ru(phen)2(mip)](ClO4)2 (1) (phen =1,10-Phenanthroline), [Ru(bpy)2(mip)](ClO4)2 (2) (bpy = 2,2’bipyridyl) and [Ru(dmb)2(mip)](ClO4)2 (3) (dmb = 4, 4′-dimethyl 2, 2′-bipyridine), were synthesized with an intercalative ligand mip (2-morpholino-1H-imidazo[4,5-f][1, 10]phenanthroline) and characterized by 1H, 13C–NMR, IR, UV-vis, mass spectra and elemental analysis. pH effect, ion selectivity (cations, anions) and solvent sensitivity of complexes were studied. The interaction of these complexes with DNA was performed using absorption, emission spectroscopy and viscosity measurements. The experimental results indicated that the two complexes interacted with calf thymus DNA (CT-DNA) by intercalative mode. BSA (Bovine Serum Albumin) protein binding of these complexes was studied by UV-visible and fluorescence techniques. The binding capacity of these complexes was explained theoretically by molecular docking method.  相似文献   
4.
A set of novel mononuclear polypyridyl complexes of Ru (II) with N – N donar ligands 1, 10 phenanthroline (phen), 2, 2′ bipyridine (bpy), 4, 4′-dimethyl 2, 2′ bipyridine (dmb) and an intercalating ligand (bnpip = 2-(4-butoxy-3-nitrophenyl)-1H-imidazo [4,5-f] [1,10] phenanthroline) have been synthesized and characterized by various spectral methods. The RT - PCR assays suggest that ruthenium (II) complexes inhibit MCF-7, breast cancer cell line by inducing apoptosis via inhibition of cell cycle check points cyclin D, cyclin E and also upregulation of caspase 8 (protein involved in late Apoptosis). Further the binding potency of Ru (II) complexes were investigated using various spectroscopic techniques like UV–visible, fluorescence and viscosity studies. The complex binds to DNA in an intercalative mode as confirmed by viscosity data with differential binding strength. All complexes show cleavage of the pBR322 DNA through a singlet oxygen production. Theoretical evidence via docking of the complex with DNA reveals the significant residues of binding as guanine.  相似文献   
5.
An intercalative ligand, ppip (ppip = {2-(4-(piperidin-1-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline}), and its mononuclear Ru(II) polypyridyl complexes, [Ru(phen)2(ppip)]2+ (1) (phen=1,10-phenanthrolene), [Ru(bpy)2(ppip)]2+ (2) (bpy=2,2′-bipyridine) and [Ru(dmb)2(ppip)]2+ (3) (dmb=4,4′-dimethyl-2,2′-bipyridine), have been synthesized and characterized by elemental analysis and spectroscopic techniques such as UV–vis, IR, 1H, as well as 13C NMR and ESI-MS. The interaction of these complexes with DNA/BSA (bovine serum albumin) was investigated using absorption, emission spectroscopy, viscosity measurements and molecular docking studies. The docking study infers that the binding strength (Kb) of these complexes was in agreement with results from absorption and emission techniques. These studies reveal that these three Ru(II) polypyridyl complexes bind to DNA/BSA. The binding ability of these complexes in the presence of different ions and solvents were also reported. All complexes were effectively cleaving pBR322 DNA in different forms and follows order which is similar to absorption and emission studies. These complexes were effective exhibiting the antimicrobial activity against different microbes Bacillus subtilis, Escherichia coli and Staphylococcus aureus.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号