首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
辛仁轩 《光谱实验室》2001,18(5):596-598
溶剂萃取过程容易发生乳化现象而影响过程的正常进行。本文提出用分光光度法研究乳化过程及乳化液的特性,并介绍了方法的原理、实施过程及绘制时间-透光率曲线(t-T%)的实例。  相似文献   

2.
酪蛋白酸钠作为一种良好的乳化剂和乳化稳定剂,对乳饮料品质具有重要的作用。蔗糖作为甜味剂,可以提高乳饮料的口感。但酪蛋白结构和性质很容易受到其所处的微环境的影响,为了分析蔗糖对酪蛋白酸钠结构及其乳化性的影响,利用荧光光谱技术探讨了酪蛋白酸钠荧光光谱和表面疏水性的变化,利用动态光散射技术分析了酪蛋白酸钠乳液液滴流体力学直径的变化,利用Turbiscan光谱学稳定性测试评价了酪蛋白酸钠乳液的背散射光强度变化以及稳定性指数(TSI)。结果表明:蔗糖会使酪蛋白酸钠发生内源荧光猝灭,猝灭速率常数KS<2.0×1010 L·mol-1·s-1,属于动态猝灭,未形成稳定的基态配合物,表明两者仅以较弱的氢键和疏水相互作用结合。酪蛋白酸钠的表面疏水性显著增强(p<0.05),部分酪蛋白酸钠聚集程度增加,形成了可溶性聚集体。随着蔗糖浓度的增加,酪蛋白酸钠乳液流体力学直径增大,是高压均质时蛋白聚集体在油水界面上优先吸附的结果。背散射光强度结果显示随着蔗糖浓度的增加,乳液越不易产生分层、浓度变化、乳滴迁移等不稳定性现象。稳定性指数显著增大(p<0.05),乳液稳定性增强。  相似文献   

3.
海面溢油在其风化迁移过程中,会形成不同溢油乳化物,对海洋环境造成极大危害。科学量化溢油乳化物,有助于溢油污染应急处理和灾损评估。已有对溢油乳化物展开的研究由于缺乏系统的实验数据、理化与光学参数,尚不清楚不同类型油水乳化物的精细光谱响应特征与变化规律,无法给出不同类型溢油乳化物光谱与海水表层油水比的数据关系。通过轻质油乳化物的室内实验,采用激光诱导荧光技术手段,从不同类型,不同表层油水比的溢油乳化物荧光光谱响应差异和变化规律入手,以乳化柴油相关数据作建模样本,乳化煤油相关数据作验证样本,开展统计分析,并分别设计了油包水、水包油两种类型下的表层油水比估测模型。数据处理过程中,为了消除LIF系统本身对接收到的荧光信号强度的影响,利用水的拉曼散射信号对乳化液的荧光信号进行归一化处理,将两者的比值作为后续的分析数据。具体数据研究表明:油包水型乳化溢油的荧光峰值对数和表层含水率对数之间可建立非线性回归模型;水包油型乳化溢油的荧光峰值和表层含水率之间也可建立非线性回归模型。非线性拟合相关系数均在0.9以上,即模型具有较高质量,且模型中的实际系数依赖于不同油种,不同的特征荧光峰。由此可见,不同乳化油种的不同特征荧光峰与表层油水比之间虽具有相同的变化趋势,但变化的程度有所不同。在此基础上,采用参数查找表的方式,建立了轻质油乳化物油水比的估测方法,可根据荧光相对强度最后反演得到表层油水比。该方法在一定程度上可对海面轻质油乳化物实现有效量化,为将来海面溢油乳化物更加实时准确的定量分析提供理论基础和依据, 也为海面溢油污染应急处理提供技术参考,因此具有重要研究意义和实用价值。  相似文献   

4.
乳化技术原子吸收光谱法测定汽油中的铅   总被引:5,自引:0,他引:5  
本文以Span-80与Tween-20为复合乳化剂,将汽油分散成均匀的油水乳化液,可直接喷入空气-乙炔火焰中进行测定,本法简单快速,乳化液稳定时间长。回收率在97-103%之间,相对标准偏差在4%以内,本法测定结果与络合滴定法基本一致。  相似文献   

5.
乳化-前驱物热分解法制备纳米氧化锌   总被引:3,自引:0,他引:3  
冯洁 《光谱实验室》2004,21(3):442-444
以 Zn(NO3 ) 2 · 6 H2 O、Na2 CO3 - Na HCO3 为原料 ,阴离子表面活性剂为乳化剂 ,有机溶剂为分散剂 ,采用乳化法制备前驱物 ,热分解前驱物得到纳米 Zn O;XRD物相分析表明 ,产物为标准六方晶系 ;Raman光谱表明产物是 Zn O晶体 ;并通过 TG- DTA确定前驱物分解成纳米 Zn O的最佳温度为 30 0℃。  相似文献   

6.
超声波在食品技术中的应用   总被引:14,自引:0,他引:14       下载免费PDF全文
强超声在媒质中传播时产生力学效应、空化效应和热效应,产匝此增强质量传输和热传递,对介质产生强的切向力。本文对超声波在辅助或强化提取,冷冻、乳化、结晶和干燥等食品的加工技术中应用加以综述。  相似文献   

7.
王斌  刘会洲 《光散射学报》2000,12(4):221-227
本工作采用 FT- Raman光谱仪对不同的 p H值的蛋白质水溶液多次扫描 ,采用酰胺 带的谱图作曲线拟合 ,并以子峰面积表征对应二级结构含量 ,得出二级结构的变化与蛋白质水溶液与乙酸丁酯混合后乳化能力变化的关系。结果表明 :蛋白质分子对 p H变化的敏感程度不一样。蛋白质分子结构的改变是引起蛋白质水溶液在有机溶液中乳化的一个重要因素  相似文献   

8.
李蕾  张程宾 《物理学报》2018,67(17):176801-176801
建立了直流电场作用下协流式微流控装置中单乳液液滴乳化生成过程的非稳态理论模型,并开展了数值模拟研究,揭示了电场对液滴乳化生成动力学行为的调控机理,阐明了流场/电场参数对液滴乳化生成特性的影响规律.研究结果表明:沿流体流动方向施加静电场可在电物性参数不同的两相流体界面法线方向上产生指向内相流体的电场力,进而强化了内相流体界面的颈缩和断裂,提升了液滴生成速率和形变程度,减小了液滴生成尺寸;在同一毛细数下,随着电毛细数的增大,乳液乳化流型由每周期仅有单一液滴生成的滴式流型转变为每周期有一个主液滴并伴随有卫星液滴生成的滴式流型;随着毛细数和电毛细数的增大,黏性拖曳力以及电场力作用增强,使内相流体颈缩过程后期更容易形成细长型液线,从而有助于诱发液线上产生Rayleigh-Plateau不稳定现象,继而促进卫星液滴的形成.  相似文献   

9.
苯-水混合液体的乳化机理研究   总被引:6,自引:0,他引:6       下载免费PDF全文
 以研究液体混合材料的冲击压缩状态方程和高温高压条件下的相变机理为最终目标,测量了在常态下苯-水-乳化剂三元样品均匀混合的表面张力、稳定性和粒度分布等量化指标,并讨论了不同制备方法对乳状液性质的影响。实验数据表明,苯-水-乳化液属于热力学不稳定体系;表面张力介于苯和水的张力之间,但不等于二者的简单平均,这与文献值一致;苯-水-乳液的制备、存储和使用环境温度不易超过53 ℃;用超声波处理后的乳液粒度分布区域变窄,但平均粒度变化不明显。本研究为解决液体混合物、特别是难于互溶的多元液体物质爆轰实验样品初始状态的量化难题提供了可靠的数据,对类似实验的制样也具有参考价值。  相似文献   

10.
为通过爆轰法合成纳米氧化铈,设计并制备了以Ce(NO3)3·6H2O为主要氧化剂的5种乳化炸药。综合考虑Ce(NO3)3含量对乳化炸药爆速的影响和纳米氧化铈的得率,筛选出适用于爆轰法制备纳米氧化铈的乳化炸药配方。通过在爆炸罐中起爆乳化炸药,制备得到了纳米氧化铈。利用X射线衍射仪(XRD)和透射电镜(TEM)对样品进行表征。XRD测试结果表明,乳化炸药爆轰法合成的纳米氧化铈属于立方晶系,理论粒径为74nm。TEM测试结果表明,合成的纳米氧化铈外观呈球形,具有较好的分散性和粒度均一性,平均粒径为70nm。  相似文献   

11.
 通过理论计算和水下爆炸实验,初步研究了MgH2敏化储氢型乳化炸药的爆炸特性和爆轰反应机理。结果表明:与玻璃微球敏化的乳化炸药相比,MgH2敏化的乳化炸药水下爆炸的冲击波超压、比冲量、比冲击波能、比气泡能及水下爆炸比总能量显著增加,其中冲击波超压和水下爆炸总能量分别增加了20.5%和31.0%。MgH2储氢型乳化炸药的爆轰机理与玻璃微球敏化乳化炸药不同,MgH2在乳化炸药中起到了敏化剂和含能材料的双重作用,即MgH2在乳化基质中水解产生均匀分布的氢气泡,起到了敏化作用,同时氢气参与爆炸反应,提高了炸药的爆炸能量和做功能力。  相似文献   

12.
为获得爆轰合成过程中纳米氧化铈粒径的控制方法,采用乳化炸药爆轰法合成了纳米氧化铈粉末,研究了乳化炸药基质中水相液滴的尺寸对乳化炸药爆速和纳米氧化铈粒径的影响。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和激光粒度仪,对不同乳化条件下得到的乳化炸药基质和相应的纳米氧化铈进行表征。结果表明,乳化炸药基质中水相液滴的尺寸对乳化炸药爆速和纳米氧化铈粒径均有较大的影响,乳化炸药基质中水相液滴的尺寸越小,相应的乳化炸药爆速越高,爆轰合成的纳米氧化铈的粒径越小,且粒径分布越均匀。  相似文献   

13.
测试了利用调Q的NdYAG脉冲激光在水中诱导金属钛产生等离子体冲击波的声压和速度.并利用自行研制的激光乳化系统,对离体猪眼晶状体经硬化处理摹拟白内障进行乳化试验.实验结果表明NdYAG激光等离子体冲击波能对一定硬度的晶状体进行乳化,有可能成为白内障乳化的一种能量源.  相似文献   

14.
利用超高压处理藜麦蛋白,研究超高压保压压力、超高压保压时间及蛋白质量分数对藜麦蛋白乳化性的影响。采用响应面法优化超高压处理条件,得到最佳工艺条件,并利用傅里叶红外光谱、粒度仪、X射线衍射(XRD)等表征方法分析乳液蛋白质的表面性质及结构特征。结果表明:保压压力为235 MPa、保压时间为5.2 min、蛋白质量分数为0.34%时,乳化指数为119 m~2/g。同时,由傅里叶红外光谱分析蛋白二级结构可知,变性后藜麦蛋白的α-螺旋结构含量降低,β-转角结构含量增加,分子无序性增加,蛋白乳化性提高。XRD分析发现,改性后蛋白在2θ=10°附近的峰强度明显减小,说明α-螺旋结构含量降低。改性后乳液蛋白粒度减小,其乳化性提升。因此,适当的超高压处理可以改善藜麦蛋白的乳化性。  相似文献   

15.
测试了利用调Q的Nd∶YAG脉冲激光在水中诱导金属钛产生等离子体冲击波的声压和速度。并利用自行研制的激光乳化系统,对离体猪眼晶状体经硬化处理摹拟白内障进行乳化试验。实验结果表明Nd∶YAG激光等离子体冲击波能对一定硬度的晶状体进行乳化,有可能成为白内障乳化的一种能量源。  相似文献   

16.
采用复乳-溶剂挥发法制备阿霉素聚乳酸微球,通过扫描电镜观察微球的形态,采用紫外分光光度法测定徽球中阿霉素的含量.结果表明,所制备的阿霉素聚乳酸微球外形圆整,阿霉素溶液在1.70-34.1μg/mL浓度范围内线性良好,校准曲线回归方程为A=0.0422C+0.1845,相关系数r为0.9997,平均回收率为99.5%(R...  相似文献   

17.
常温液体奶酪是一种能够在室温下贮藏3~6个月的奶酪产品。液体奶酪在经高温处理后体系中的微生物数量达到商业无菌水平,但由于液体奶酪是一种水包油的不稳定乳液体系,在常温贮藏过程中,由于分散相颗粒的迁移和粒径大小变化导致乳液体系容易出现聚集、絮凝、浮油及沉淀等失稳现象,从而影响产品品质,缩短产品货架期,准确判断液体奶酪的稳定性对优化其加工条件具有重要意义。传统液态乳制品的稳定性评价主要是通过加速实验后肉眼观察分层、沉淀等情况,以及动态光散射等手段,尚缺乏快速可靠以及量化的评价标准。Turbiscan多重光技术在测试流体的稳定性时,无需对样品进行前处理,可实时检测样品的背向散射光和透射光的强度,计算出体系内部颗粒的迁移速率、沉淀层的厚度、体系的不稳定指数等参数,因此是评价流体稳定性的有效手段。研究利用Turbiscan多重光散射技术评价乳化盐、乳化剂、稳定剂和甜味剂的添加量对常温液体奶酪稳定性影响,同时以TSI值和感官得分为响应值,采用响应面法中的Box-Behnken试验设计模型优化常温液体奶酪的最佳配方工艺条件,并分析了导致常温液体奶酪不稳定的主要因素。研究发现:当乳化盐添加量为0.20%,0.40%,0.60%和0.80%时,24 h后的不稳定性指数从0.4增加到12.6;当乳化剂添加量为0.80%,1.0%时,24 h后的不稳定性指数从0.95增加到3.9;当稳定剂添加量为0.7%,0.9%时,24 h后的不稳定性指数从0.9增加到1.3,而甜味剂对体系整体稳定性的影响差异不显著。各因素对常温液体奶酪的不稳定性指数和感官得分影响顺序为乳化盐添加量(A)>乳化剂添加量(B)>稳定剂添加量(C)。乳化盐添加量0.60%、乳化剂添加量0.60%、稳定剂添加量0.70%、甜味剂添加量5.5%时,产品品质最佳且稳定性最高,在此优化条件下,样品在37 ℃,24 h内的整体不稳定指数值为0.80,样品顶端、底端的背散射光强变化值分别为0.66和0.78,感官评分为89分。研究表明通过调整乳化盐、乳化剂和稳定剂的用量能够很好地解决常温液体奶酪分层的问题,提高常温液体奶酪的稳定性。  相似文献   

18.
乳化法-FAAS法测定奶茶粉中的钙   总被引:3,自引:1,他引:2  
本文采用乳化法将奶茶粉样品用乳化剂OP乳化成分散均匀且稳定的乳浊液,直接喷入空气-乙炔火焰中,以标准加入法测定钙含量。测定结果与灰化法一致,检出限0.021μg·mL^-1,RSD小于2.84%,方法简便、快速、准确。  相似文献   

19.
乳化技术-火焰原子吸收光谱法测定原油中的铁镍   总被引:10,自引:0,他引:10  
以Triton X-100为乳化剂将样品的甲基异丁基酮-二甲苯溶液乳化成乳浊液,以聚异丁烯空白溶液为参比,用标准加入法测定。建立了乳化技术-火焰原子吸收光谱法测定原油中铁、镍的快速分析方法。提出了配制空白溶液的原理及方法,对溶剂及乳化剂的选择、空白溶液的配制进行了考察,测定结果与灰化法一致。  相似文献   

20.
利用LS-DYNA动力学有限元软件,对新型乳化炸药动压减敏装置的作用过程进行了三维数值模拟,研究了该装置在水下爆炸过程中的流场分布特征,及其结构设计对实验结果的影响。对比研究结果表明,新型乳化炸药动压减敏装置中,受压乳化炸药之间的排距是影响实验精度的关键因素,当乳化炸药的半径为2cm、主发药RDX的质量为10g时,乳化炸药的最小排距(即前排乳化炸药对后排乳化炸药影响最小时的排距)为20cm。因此,在乳化炸药动态减敏实验开展之前,可以通过数值模拟的手段预先确定最小排距,减小实验误差。该方法可为乳化炸药动压减敏的后续深入研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号