首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
张兴晨  田国  高兴森 《物理》2023,(2):99-107
利用磁电耦合实现电场驱动磁翻转是多铁性材料领域的重要方向,有望用于大幅降低自旋电子学器件的能耗,并为解决日益增长的数据处理用电问题提供一种新方案。在过去几年,纯电控磁研究经历了曲折历程,取得一系列重要突破,包括纳米复合异质结构筑、应变耦合驱动电控180°磁翻转、界面磁交换耦合实现低电压驱动180°磁翻转,以及电场调控斯格明子磁性拓扑态等,为进一步开发超低能耗磁电存储或逻辑器件奠定了基础。文章聚焦于面向磁电信息器件的纯电场调控磁翻转,并简要回顾近十年来这一分支领域的发展历程和重要进展,梳理该领域目前所面临的问题并展望未来研究方向。  相似文献   

2.
LaAlO_3/SrTiO_3(LAO/STO)氧化物异质结界面存在的二维电子气(2DEG)具有很强的Rashba自旋轨道耦合(Rashba SOC),并且SOC强度受栅压调控.这使得LAO/STO有潜力成为自旋电子学器件的平台.实现自旋电子学器件需要对LAO/STO异质结进行微纳加工.本文中,我们研究了使用Ar+离子束辐照得到的LAO/STO异质结条带的低温磁输运性质.我们发现随着LAO/STO条带宽度减小,由于边界缺陷对载流子的束缚作用,栅压调控SOC强度的能力减弱甚至消失.  相似文献   

3.
霍尔天平材料中层间耦合作用易于调控,基于此可以实现多组态磁存储模式,其区别于当前基于自旋阀或者磁性隧道结的传统二组态磁存储原理.与此同时,还可以在存储单元中实现信息的逻辑运算从而提高器件整体的运算效率.这一设计有利于自旋电子学器件的微型化、集成化,有望从物理原理上解决当前基于自旋阀或者磁性隧道结的传统二组态自旋电子学材料器件的技术瓶颈,进一步提高磁存储密度,为推动新型自旋电子学材料的研究开辟了一条新的研究思路.首先,本综述将介绍基于霍尔天平材料的磁存储器件的研究背景;其次,重点介绍霍尔天平存储逻辑器件一体化设计的提出与发展历程;再次,介绍霍尔天平材料关键指标-霍尔电阻比值的界面调控及物理机理探索;随后详细阐述霍尔天平体系中磁性斯格明子的产生与多场调控等动态行为.最后,简单介绍霍尔天平结构在其他相关材料中的扩展、应用,并展望其在未来器件应用中的前景.  相似文献   

4.
自旋霍尔纳米振荡器利用电流产生的自旋轨道力矩驱动磁性薄膜中磁矩进行高频进动,能在微纳尺度下实现全电学调控的相干自旋波和微波信号,是一类新型的纳米自旋电子学器件,在信息存储、处理和通信方面具有广泛的应用前景。基于强自旋轨道矩效应,人们近期在各类铁 磁/非磁重金属构成的双层薄膜结构中,已实现了多种不同自旋波模式的电学激发和调控,并对 其复杂的非线性动力学特性进行了深入的探究。基于这些前期的研究结果与最新的进展,我们在 本综述中对“对三角”结构的纳米间隙型、“蝴蝶结”型、纳米线型、垂直纳米点接触型以及阵 列等具有各类器件结构的自旋霍尔纳米振荡器所体现出来的丰富非线性动力学特性进行了详细讨 论与归纳,并对其在新型低能耗量子磁振子自旋器件和非冯诺依曼架构的自旋型人工神经网络计 算方面的潜在应用也进行了探讨。  相似文献   

5.
陈爱天  赵永刚 《物理学报》2018,67(15):157513-157513
电场调控磁性能够有效降低功耗,在未来低功耗多功能器件等方面具有巨大的潜在应用前景.铁磁/铁电多铁异质结构是实现电场调控磁性的有效途径,其中室温、磁电耦合效应大的应变媒介磁电耦合是最为活跃的研究领域之一.本文简要介绍在以Pb(Mg_(1/3)Nb_(2/3))_(0.7)Ti_(0.3)O_3为铁电材料的多铁异质结构中通过应变媒介磁电耦合效应对磁性、磁化翻转及磁性隧道结调控的研究进展.首先讨论了多铁异质结构中电场对磁性的调控;之后介绍了电场调控磁化翻转的研究进展及理论上实现的途径;然后简述了电场对磁性隧道结调控的相关结果;最后在此基础上,对多铁异质结构中电场调控磁性及磁性器件进行了总结和展望.  相似文献   

6.
韩秀峰 《物理》2008,37(6):392-399
文章介绍了作者所在实验室在巨磁电阻(GMR)、隧穿磁电阻(TMR)、庞磁电阻(CMR)和反铁磁钉扎薄膜材料以及单晶金属氧化物、高自旋极化率材料、P-N异质结和纳米环磁随机存储器原理型演示器件设计等研究方面取得的一些重要研究成果和进展.例如:在Al-O势垒磁性隧道结材料体系里,获得室温磁电阻超过80%的国际最好结果;获得两种高性能层状反铁磁钉扎材料体系;发现具有大的电致电阻效应的CMR薄膜材料,并可期望用于电流直接进行磁信息写和读操作的磁存储介质;发现双势垒磁性隧道结中的量子阱态共振隧穿和磁电阻振荡效应,以及纳米器件体系中自旋翻转长度的观测新方法,可用于新型自旋电子学材料及相关器件的人工辅助设计;利用电子自旋共振谱探测和研究了金属氧化物的微观自旋结构和各向异性;在[CoFe/Pt]n磁性金属多层膜中,观测到超高灵敏度的反常霍尔效应;利用纳米环状磁性隧道结作为存储单元,研制出一种新型纳米环磁随机存储器MRAM原理型演示器件.  相似文献   

7.
在分子自旋电子学中,向非磁性的分子器件中注入自旋引起了广泛关注.在此提出一个新颖的策略,将磁性引入到与两个扶手椅形石墨烯纳米带电极耦合的单个苯分子器件中,即将这两个扶手椅形石墨烯纳米带电极的末端切割成锯齿形边缘的三角形石墨烯.利用第一性原理方法研究了分子结的自旋相关输运性质.结果表明,由于锯齿形边缘的三角形石墨烯向扶手椅形石墨烯纳米带电极和苯分子的自旋转移,导致锯齿形边缘三角形石墨烯的本征磁性减弱.有趣的是,虽然锯齿形边缘三角形石墨烯的本征磁性衰减了,但仍对分子结的自旋输运有显著的贡献.输运计算表明,在自旋平行构型下,可以获得较大的电流自旋极化率.然而,在自旋反平行构型下,电流的自旋极化率发生了反转.器件隧穿磁电阻的正负可以通过偏压来调控.这项工作提出了一个在新型分子自旋电子器件中设计和应用石墨烯纳米带的有趣方法.  相似文献   

8.
通过建立微波激励下的非对称条形多铁纳磁体的微磁模型,研究了倾斜角和缺陷角对该形纳磁体的铁磁共振谱和自旋波模式的影响.通过对微磁仿真得到的动态磁化数据进行分析发现,非对称条形纳磁体倾斜角度增加,铁磁共振频率随之增加,而这一现象与纳磁体的缺陷角度无关.倾斜角不变,非对称条形纳磁体的铁磁共振频率与缺陷角度呈单调递增关系,并且不同缺陷角度纳磁体的自旋波模式显示出极大的差异.非对称条形纳磁体与矩形纳磁体相比,它的自旋波模式局部化,具体为非对称条形纳磁体的自旋波模式不对称且高进动区域存在于边缘,表现为非对称边缘模式.倾斜角改变导致纳磁体内部退磁场变化,引起纳磁体边缘模式的移动,而中心模式对倾斜角的变化并不敏感.最后,对建立的模型在高频微波磁场激励下的磁损耗进行了分析,验证了模型的可靠性.这些结论说明缺陷角和倾斜角可用于纳磁体自旋波模式和铁磁共振频率的调谐,所得结果为可调纳磁微波器件的设计提供了重要的理论依据和思路.  相似文献   

9.
李子安  柴可  张明  朱春辉  田焕芳  杨槐馨 《物理学报》2018,67(13):131203-131203
斯格明子(skyrmion)磁序结构与晶体微观结构的关联是新型功能磁材料和器件研发的重要问题.本文利用微纳加工技术制备了形状、尺寸均可控的磁纳米结构,通过电子全息术观察定量地分析了斯格明子磁序结构,确定了材料晶格缺陷和空间受限效应对斯格明子磁结构形成和稳定机制的影响,系统地分析了斯格明子基元的磁功能与材料微结构的关联.文中主要探讨了两个问题:1)斯格明子在磁纳米结构中的空间受限效应.重点研究斯格明子磁序随外磁场和温度变化的演变规律,探索其演变过程的拓扑属性和稳定性;2)晶格缺陷对斯格明子磁结构的影响,重点考察晶界原子结构手性反转对斯格明子磁序的影响.这些研究结果可为研发以磁斯格明子为基元的磁信息存储器及自旋电子学器件提供重要实验基础.  相似文献   

10.
自旋器件有望实现量子信息存储、传感和计算,是下一代数据存储和通信的理想器件.与无机自旋器件相比,有机自旋器件不仅可以实现传统无机自旋器件的功能,而且在同一有机自旋阀器件中会同时测到正负磁电阻信号,这是因为有机分子与铁磁电极在界面会发生自旋杂化而产生独特的自旋界面.通过控制自旋界面,可以改变界面处分子能级展宽和偏移程度,从而实现对磁电阻信号的可控调制.有机自旋阀器件发展迅速,但仍有一些问题亟待研究,如对自旋界面进行识别和表征,以及利用自旋界面对有机自旋阀信号进行操控等.针对上述问题,本文首先综述了有机自旋阀的基本原理,通过对比无机有机材料能级结构的差异解释了有机自旋阀中自旋界面形成的原因,对于有机自旋阀中磁电阻信号的增强和反转现象,利用自旋界面模型中能级展宽和偏移进行了解释;接着列举了自旋界面的实验识别案例,如利用对表面敏感的表征技术对自旋界面进行识别以及设计新颖的器件结构验证自旋界面的存在等;然后汇总了利用自旋界面调制自旋信号的相关工作,自旋界面的调制可以通过电场调节铁电层的铁电极化、诱导铁磁电极相变、界面化学工程和磁交换相互作用等方式实现;最后总结了有机自旋界面中仍需解决的问题,并对...  相似文献   

11.
A reversal of magnetization requiring only the application of an electric field can lead to low-power spintronic devices by eliminating conventional magnetic switching methods. Here we show a nonvolatile, room temperature magnetization reversal determined by an electric field in a ferromagnet-multiferroic system. The effect is reversible and mediated by an interfacial magnetic coupling dictated by the multiferroic. Such electric-field control of a magnetoelectric device demonstrates an avenue for next-generation, low-energy consumption spintronics.  相似文献   

12.
《Comptes Rendus Physique》2015,16(2):168-181
The control of magnetism by electric fields is an important goal for future low-power spintronics devices. This partly explains the intensified recent interest for magnetoelectric multiferroic materials and heterostructures. The lack of ferro- or ferrimagnetic–ferroelectric materials with large magnetoelectric coupling between the two orders has spurred intensive research on artificial multiferroics combining ferroelectric or piezoelectric materials and ferromagnets. In this paper we review synthetically the potential of thin-film-based heterostructures in which a magnetic film is in contact with a ferroelectric or piezoelectric one to obtain an electric control of magnetic properties. This electric control either results from a strain-induced magnetoelectric coupling, a charge-driven one, or from the modulation of an interfacial exchange-bias interaction.  相似文献   

13.
We review the recent developments in the electric field control of magnetism in multiferroic heterostructures, which consist of heterogeneous materials systems where a magnetoelectric coupling is engineered between magnetic and ferroelectric components. The magnetoelectric coupling in these composite systems is interfacial in origin, and can arise from elastic strain, charge, and exchange bias interactions, with different characteristic responses and functionalities. Moreover, charge transport phenomena in multiferroic heterostructures, where both magnetic and ferroelectric order parameters are used to control charge transport, suggest new possibilities to control the conduction paths of the electron spin, with potential for device applications.  相似文献   

14.
磁性金属纳米结构的畴壁特性与磁逻辑电路构筑   总被引:1,自引:0,他引:1       下载免费PDF全文
自旋电子学由于其丰富的物理内涵和广泛的应用前景受到学术界和工业界的高度重视,成为近年来凝聚态物理和信息技术领域关注的焦点。本文介绍了利用磁性金属纳米结构实现作为自旋电子器件基础的自旋注入的方法,特别涉及利用铁磁金属纳米点接触结构钉扎磁畴的特点,研究自旋极化电流与磁畴壁的相互作用规律, 理解纳米结构中畴壁的动力学行为,并以此为基础构筑结构简单、性能优异的全金属磁逻辑电路,从而实现了由电信号驱动,通过电信号检测,并与CMOS技术兼容的目的。  相似文献   

15.
Multiferroics are those materials with more than one ferroic order, and magnetoelectricity refers to the mutual coupling between magnetism (spins and/or magnetic field) and electricity (electric dipoles and/or electric field). In spite of the long research history in the whole twentieth century, the discipline of multiferroicity has never been so highly active as that in the first decade of the twenty-first century, and it has become one of the hottest disciplines of condensed matter physics and materials science. A series of milestones and steady progress in the past decade have enabled our understanding of multiferroic physics substantially comprehensive and profound, which is further pushing forward the research frontier of this exciting area. The availability of more multiferroic materials and improved magnetoelectric performance are approaching to make the applications within reach. While seminal review articles covering the major progress before 2010 are available, an updated review addressing the new achievements since that time becomes imperative. In this review, following a concise outline of the basic knowledge of multiferroicity and magnetoelectricity, we summarize the important research activities on multiferroics, especially magnetoelectricity and related physics in the last six years. We consider not only single-phase multiferroics but also multiferroic heterostructures. We address the physical mechanisms regarding magnetoelectric coupling so that the backbone of this divergent discipline can be highlighted. A series of issues on lattice symmetry, magnetic ordering, ferroelectricity generation, electromagnon excitations, multiferroic domain structure and domain wall dynamics, and interfacial coupling in multiferroic heterostructures, will be revisited in an updated framework of physics. In addition, several emergent phenomena and related physics, including magnetic skyrmions and generic topological structures associated with magnetoelectricity will be discussed. The review is ended with a set of prospectives and forward-looking conclusions, which may inevitably reflect the authors' biased opinions but are certainly critical.  相似文献   

16.
The magnetic exchange between epitaxial thin films of the multiferroic (antiferromagnetic and ferroelectric) hexagonal YMnO3 oxide and a soft ferromagnetic (FM) layer is used to couple the magnetic response of the FM layer to the magnetic state of the antiferromagnetic one. We will show that biasing the ferroelectric YMnO3 layer by an electric field allows control of the magnetic exchange bias and subsequently the magnetotransport properties of the FM layer. This finding may contribute to paving the way towards a new generation of electric-field controlled spintronic devices.  相似文献   

17.
We review and critique the recent developments on multifunctional oxide materials, which are gaining a good deal of interest. Recongnizing that this is a vast area, the focus of this treatment is mainly on high-κ dielectric, ferroelectric, magnetic, and multiferroic materials. Also, we consider ferrimagnetic oxides in the context of the new, rapidly developing field of negative-index metamaterials. This review is motivated by the recent resurgence of interest in complex oxides owing to their coupling of electrical, magnetic, thermal, mechanical, and optical properties, which make them suitable for a wide variety of applications, including heat, motion, electric, and magnetic sensors; tunable and compact microwave passive components; surface acoustic wave devices; nonlinear optics; and nonvolatile memory, and pave the way for designing multifunctional devices and unique applications in spintronics and negative refraction-index media. For most of the materials treated here, structural and physical properties, preparation methods accompanied by particulars of synthesis of thin films, devices based on them, and some projections into their future applications are discussed.  相似文献   

18.
Yu Zhang 《中国物理 B》2021,30(11):118504-118504
Magnetic two-dimensional (2D) van der Waals (vdWs) materials and their heterostructures attract increasing attention in the spintronics community due to their various degrees of freedom such as spin, charge, and energy valley, which may stimulate potential applications in the field of low-power and high-speed spintronic devices in the future. This review begins with introducing the long-range magnetic order in 2D vdWs materials and the recent progress of tunning their properties by electrostatic doping and stress. Next, the proximity-effect, current-induced magnetization switching, and the related spintronic devices (such as magnetic tunnel junctions and spin valves) based on magnetic 2D vdWs materials are presented. Finally, the development trend of magnetic 2D vdWs materials is discussed. This review provides comprehensive understandings for the development of novel spintronic applications based on magnetic 2D vdWs materials.  相似文献   

19.
In situ Transmission Electron Microscopy (TEM) techniques can potentially fill in gaps in the current understanding interfacial phenomena in complex oxides. Select multiferroic oxide materials, such as BiFeO(3) (BFO), exhibit ferroelectric and magnetic order, and the two order parameters are coupled through a quantum-mechanical exchange interaction. The magneto-electric coupling in BFO allows control of the ferroelectric and magnetic domain structures via applied electric fields. Because of these unique properties, BFO and other magneto-electric multiferroics constitute a promising class of materials for incorporation into devices such as high-density ferroelectric and magnetoresistive memories, spin valves, and magnetic field sensors. The magneto-electric coupling in BFO is mediated by volatile ferroelastically switched domains that make it difficult to incorporate this material into devices. To facilitate device integration, an understanding of the microstructural factors that affect ferroelastic relaxation and ferroelectric domain switching must be developed. In this article, a method of viewing ferroelectric (and ferroelastic) domain dynamics using in situ biasing in TEM is presented. The evolution of ferroelastically switched ferroelectric domains in BFO thin films during many switching cycles is investigated. Evidence of partial domain nucleation, propagation, and switching even at applied electric fields below the estimated coercive field is revealed. Our observations indicate that the occurrence of ferroelastic relaxation in switched domains and the stability of these domains is influenced the applied field as well as the BFO microstructure. These biasing experiments provide a real time view of the complex dynamics of domain switching and complement scanning probe techniques. Quantitative information about domain switching under bias in ferroelectric and multiferroic materials can be extracted from in situ TEM to provide a predictive tool for future device development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号