首页 | 本学科首页   官方微博 | 高级检索  
     检索      

纳米结构中磁斯格明子的原位电子全息研究
引用本文:李子安,柴可,张明,朱春辉,田焕芳,杨槐馨.纳米结构中磁斯格明子的原位电子全息研究[J].物理学报,2018,67(13):131203-131203.
作者姓名:李子安  柴可  张明  朱春辉  田焕芳  杨槐馨
作者单位:1. 中国科学院物理研究所, 北京 100190; 2. 北京理工大学物理学院, 北京 100081; 3. 中国科学院大学物理科学学院, 北京 101408
基金项目:国家自然科学基金(批准号:11774403)和国家重点研发计划(批准号:2017YFA0303000,2017YFA0302904)资助的课题.
摘    要:斯格明子(skyrmion)磁序结构与晶体微观结构的关联是新型功能磁材料和器件研发的重要问题.本文利用微纳加工技术制备了形状、尺寸均可控的磁纳米结构,通过电子全息术观察定量地分析了斯格明子磁序结构,确定了材料晶格缺陷和空间受限效应对斯格明子磁结构形成和稳定机制的影响,系统地分析了斯格明子基元的磁功能与材料微结构的关联.文中主要探讨了两个问题:1)斯格明子在磁纳米结构中的空间受限效应.重点研究斯格明子磁序随外磁场和温度变化的演变规律,探索其演变过程的拓扑属性和稳定性;2)晶格缺陷对斯格明子磁结构的影响,重点考察晶界原子结构手性反转对斯格明子磁序的影响.这些研究结果可为研发以磁斯格明子为基元的磁信息存储器及自旋电子学器件提供重要实验基础.

关 键 词:磁斯格明子  磁纳米结构  洛伦兹透射电子显微镜  电子全息术
收稿时间:2018-03-12

In situ electron holography of magnetic skyrmions in nanostructures
Li Zi-An,Chai Ke,Zhang Ming,Zhu Chun-Hui,Tian Huan-Fang,Yang Huai-Xin.In situ electron holography of magnetic skyrmions in nanostructures[J].Acta Physica Sinica,2018,67(13):131203-131203.
Authors:Li Zi-An  Chai Ke  Zhang Ming  Zhu Chun-Hui  Tian Huan-Fang  Yang Huai-Xin
Institution:1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. School of Physics, Beijing Institute of Technology, Beijing 100081, China; 3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
Abstract:Understanding the correlations between magnetic skyrmions and the microstructural characteristics of the crystals that host skyrmions is a key issue for fundamental research and practical applications of novel type of magnetic materials. Magnetic skyrmion has received great attention due to its non-trivial topological properties and stability. Here we focus on two important points:1) dimensional confinement effects on magnetic skyrmions in magnetic nanostructures, specifically, the magnetic evolution, its related topological properties and energetic stability in confined nanostructured geometries; 2) effects of crystallographic defects on magnetic skyrmions, such as the pinning effect of magnetic skyrmion by crystal defects, and the effect of crystallographic-magnetic chirality reversal at crystal grain boundaries. For the study of dimensional effects on skyrmions in confined nanoscale geometries, we use state-of-the-art electron holography to directly image the morphology and nucleation of magnetic skyrmions in a wedge-shaped FeGe nanostripe that has a width in a range of 45-150 nm. Our experimental results reveal that geometrically-confined skyrmions are able to adopt a wide range of sizes and ellipticity in a nanostripe, which are not existent in thin films nor bulk materials and can be created from a helical magnetic state with a distorted edge twist in a simple and efficient manner. We further perform micromagnetic simulations to confirm our experimental results. The flexibility and ease of formation of geometrically confined magnetic skyrmions may help to optimize the design of skyrmion-based memory devices. For studying the effects of crystallographic defects on magnetic skyrmions, we use in situ Lorentz microscopy and off-axis electron holography to investigate the formation and characteristics of skyrmion lattice defects and their relationship to the underlying crystallographic structure of a B20 FeGe thin film. The measurements of spin configurations at grain boundaries reveal the crystallographic and magnetic chirality across adjacent grains, resulting in the formation of interface spin stripes at the grain boundaries. In the absence of material defects, our results show that skyrmion lattices possess dislocations and domain boundaries, in analogy to atomic crystals. Moreover, the distorted skyrmions can flexibly change their size and shape to accommodate local geometry, especially at sites of dislocations in the skyrmion lattice. These findings offer an insight into the elasticity of topologically protected skyrmions and their correlation with underlying material defects. Our electron holography results provide a quantitative determination of the fine skyrmionic spin textures in magnetic nanostructures. The resolved spin textures will be correlated with the material microstructures to provide important information about the relationship between the magnetic functions and the material microstructures. Our experiments also highlight the applicability of state-of-the-art electron holography for the study of complex spin textures in nanostructures.
Keywords:magnetic skyrmion  magnetic nanostructures  lorentz microscopy  electron holography
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号