首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
At low temperatures the configurational phase space of a macroscopic complex system (e.g., a spin-glass) of N - 10^23 interacting particles may split into an exponential number Ωs - exp(const × N) of ergodic sub-spaces (thermodynamic states). It is usually assumed that the equilibrium collective behavior of such a system is determined by its ground thermodynamic states of the minimal free-energy density, and that the equilibrium free energies follow the distribution of exponentied decay. But actually for some complex systems, the equilibrium free-energy values may follow a Gaussian distribution within an intermediate temperature range, and consequently their equilibrium properties are contributed by excited thermodynamic states. Based on this analysis, the re-weighting parameter y in the cavity approach of spin-glasses is easily understood. Depending on the free-energy distribution, the optimal y can either be equal to or be strictly less than the inverse temperature β.  相似文献   

2.
First-principles spin-polarized density functional theory (DFT) investigations of the structural, electronic, magnetic, and thermodynamics characteristics of the half-Heusler, CoMnTe and RuMnTe compounds are carried out. Calculations are accomplished within a state of the art full-potential (FP) linearized (L) augmented plane wave plus a local orbital (APW + lo) computational approach framed within DFT. The generalized gradient approximation (GGA) parameterized by Perdew, Burke, and Ernzerhof (PBE) is implemented as an exchange correlation functional as a part of the total energy calculation. From the analysis of the calculated electronic band structure as well as the density of states for both compounds, a strong hybridization between d states of the higher valent transition metal (TM) atoms (Co, Ru) and lower valent TM atoms of (Mn) is observed. Furthermore, total and partial density of states (PDOS) of the ground state and the results of spin magnetic moments reveal that these compounds are both stable and ideal half-metallic ferromagnetic. The effects of the unit cell volume on the magnetic properties and half-metaliicity are crucial. It is worth noting that our computed results of the total spin magnetic moments, for CoMnTe equal to 4 ~tB and 3 p-B per unit cell for RuMnTe, nicely follow the rule μ2tot = Zt - 18. Using the quasi-harmonic Debye model, which considers the phononic effects, the effecs of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and heat capacity for these compounds are investigated for the first time.  相似文献   

3.
Shell model molecular dynamic simulation with interatomic pair potential is utilized to investigate the elastic and thermodynamic properties of gallium nitride with hexagonal wurtzite structure (w-GaN) at high pressure. The calculated elastic constants Cij at zero pressure and 300 K agree well with the experimental data and other calculated values. Meanwhile, the dependences of the relative volume V/Vo, elastic constants Cij, entropy S, enthalpy H, and heat capacities Cv and Up on pressure are successfully obtained. From the elastic constants obtained, we also calculate the shear modulus G, bulk modulus B, Young's modulus E, Poisson's ratio v, Debye temperature ΘD, and shear anisotropic factor Ashear on pressures.  相似文献   

4.
In the present paper, we report on the results of various thermodynamic properties of 3C-SiC at high pressure and temperature using first principles calculations. We use the plane-wave pseudopotential density functional theory as im- plemented in Quantum ESPRESSO code for calculating various cohesive properties in ambient condition. Further, ionic motion at a finite temperature is taken into account using the quasiharmonic Debye model. The calculated thermody- namic properties, phonon dispersion curves, and phonon densities of states at different temperatures and structural phase transitions at high pressures are found to be in good agreement with experimental and other theoretical results.  相似文献   

5.
A Brownian microscopic heat engine with a particle hopping on a one-dimensional lattice driven by a discrete and periodic temperature field in a periodic sawtooth potential is investigated. In order to clarify the underlying physical pictures of the heat engine, the heat flow via the potential energy and the kinetic energy of the particles are considered simultaneously. Based on describing the jumps among the three states, the expressions of the efficiency and power output of the heat engine are derived analytically. The general performance characteristic curves are plotted by numerical calculation. It is found that the power output-efficiency curve is a loop-shaped one, which is similar to one for a real irreversible heat engine. The influence of the ratio of the temperature of the hot and cold reservoirs and the sawtooth potential on the maximum efficiency and power output is analyzed for some given parameters. When the heat flows via the kinetic energy is neglected, the power output-efficiency curve is an open-shaped one, which is similar to one for an endroeversible heat engine.  相似文献   

6.
The lattice parameters, bulk modulus, phase transition pressure, and temperature dependencies of the elastic constants cij of CdSe are investigated by using the Cambridge Serial Total Energy Package (CASTEP) program in the frame of Density Functional Theory (DFT). It is found that the phase transitions from the ZB structure to the RS structure and from WZ structure to RS structure are 2.2 GPa and 2.8 GPa, respectively. Our results agree well with the available experimental data and other theoretical results. The aggregate elastic modulus (B, G, E, A ), the Poisson's ratio (v), the Griuneisen parameter (γ), the Debye temperature θD on pressure and temperature are also successfully obtained.  相似文献   

7.
Textured silicon (Si) substrates decorated with regular microscale square pillar arrays of nearly the same side length, height, but different intervals are fabricated by inductively coupled plasma, and then silanized by self-assembly octadecyl- trichlorosilane (OTS) film. The systematic water contact angle (CA) measurements and micro/nanoscale hierarchical rough structure models are used to analyze the wetting behaviors of original and silanized textured Si substrates each as a function of pillar interval-to-width ratio. On the original textured Si substrate with hydrophilic pillars, the water droplet possesses a larger apparent CAs (〉 90~) and contact angle hysteresis (CAH), induced by the hierarchical roughness of microscale pil- lar arrays and nanoscale pit-like roughness. However, the silanized textured substrate shows superhydrophobicity induced by the low free energy OTS overcoat and the hierarchical roughness of microscale pillar arrays, and nanoscale island-like roughness. The largest apparent CA on the superhydrophobic surface is 169.8~. In addition, the wetting transition of a gently deposited water droplet is observed on the original textured substrate with pillar interval-to-width ratio increasing. Furthermore, the wetting state transition is analyzed by thermodynamic approach with the consideration of the CAH effect. The results indicate that the wetting state changed from a Cassie state to a pseudo-Wenzel during the transition.  相似文献   

8.
First-principles calculations are used to investigate the mechanical and thermodynamic properties of cubic YH2 at different pressures and temperatures. The generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) method is used to describe the exchange-correlation energy in the present work. The calculated equilibrium lattice constant a and bulk modulus B are in good accordance with the available experimental values. According to the Born-Huang criteria for mechanical stability, elastic constants are calculated from the strain-induced stress method in a pressure range from 0 to 67.1 GPa. Isotropic wave velocities and sound velocities are discussed in detail. It is found that the Debye temperature decreases monotonically with the increase of pressure and that YH2 has low anisotropy in both longitudinal and shear-wave velocities. The calculated elastic anisotropic factors indicate that YH2 has low anisotropy at zero pressure and that its elastic anisotropy increases as pressure increases. Through the quasi-harmonic Debye model, in which phononic effects are considered, the thermodynamic properties of YH2, such as the relations of (V-Vo)/Vo to the temperature and the pressure, the dependences of heat capacity Cv and thermal expansion coefficient a on temperature and pressure ranging from 0 to 2400 K and from 0 to 65 GPa, respectively, are also discussed.  相似文献   

9.
In this paper, we present a comprehensive investigation of the effects of the transverse correlation function (TCF) on the thermodynamic properties of Heisenberg antiferromagnetic (AFM) and ferromagnetic (FM) systems with cubic lattices. The TCF of an FM system is positive and increases with temperature, while that of an AFM system is negative and decreases with temperature. The TCF lowers internal energy, entropy and specific heat. It always raises the free energy of an FM system but raises that of an AFM system only above a specific temperature when the spin quantum number is S 〉 1. Comparisons between the effects of the TCFs on the FM and AFM systems are made where possible.  相似文献   

10.
张婷  丁玲红  张伟风 《中国物理 B》2012,21(4):47301-047301
La0.67Ca0.33MnO3 thin films are fabricated on fluorine-doped tin oxide conducting glass substrates by a pulsed laser deposition technique with SrTiO3 used as a buffer layer. The current-voltage characteristics of the heterojunetions exhibit an asymmetric and resistance switching behaviour. A homogeneous interface-type conduction mechanism is also reported using impedance spectroscopy. The spatial homogeneity of the charge carrier distribution leads to field- induced potential-barrier change at the Au-La0.67Ca0.33MnO3 interface and a concomitant resistance switching effect. The ratio of the high resistance state to the low resistance state is found to be as high as 1.3 x 10^4% by simulating the AC electric field. This colossal resistance switching effect will greatly improve the signal-to-noise ratio in nonvolatile memory applications.  相似文献   

11.
TiO 2 nano powders with Mn concentration of 0 at%-12 at% were synthesized by the sol-gel process,and were annealed at 500 C and 800 C in air for 2 hrs.X-ray diffraction (XRD) measurements indicate that the Mn-TiO 2 nano powders with Mn concentration of 1 at% and 2 at% annealed at 500 and 800 C are of pure anatase and rutile,respectively.The scanning electron microscope (SEM) observations reveal that the crystal grain size increases with the annealing temperature,and the high resolution transmission electron microscopy (HRTEM) investigations further indicate that the samples are well crystallized,confirming that Mn has doped into the TiO 2 crystal lattice effectively.The room temperature ferromagnetism,which could be explained within the scope of the bound magnetic polaron (BMP) theory,is detected in the Mn-TiO 2 samples with Mn concentration of 2 at%,and the magnetization of the powders annealed at 500 C is stronger than that of the sample treated at 800 C.The UV-VIS diffuse reflectance spectra results demonstrate that the absorption of the TiO 2 powders could be enlarged by the enhanced trapped electron absorption caused by Mn doping.  相似文献   

12.
阮文  伍冬兰  罗文浪  余晓光  谢安东 《中国物理 B》2014,23(2):23102-023102
The structures and hydrogen storage properties of sodium atoms decorated B6 clusters are investigated by the B3LYP method with a 6-311+G (d, p) basis set. For NamB6 (m = 1-3) clusters, Na atoms are always inclined to separate far enough from each other and not cluster together on a B6 cluster surface so that each Na atom has sufficient space to bind hydrogen molecules. The hydrogen storage gravimetric density of a two Na atoms decorated B6 cluster is 17.91 wt% with an adsorption energy per H2 molecule (AAE/H2) of 0.6851 kcal.mo1^-1. The appropriate AAE/H2 and preferable gravimetric density of the two Na atoms decorated B6 cluster complex indicate that it is feasible for hydrogen storage application in ambient conditions.  相似文献   

13.
This paper reprots that with Ni-based catalyst/solvent and with a dopant of NaN 3,large green single crystal diamonds with perfect shape are successfully synthesized by temperature gradient method under high pressure and high temperature in a China-type cubic anvil high-pressure apparatus (SPD-6×1200),and the highest nitrogen concentration reaches approximately 1214-1257 ppm calculated by infrared absorption spectra.The synthesis conditions are about 5.5 GPa and 1240-1300 C.The growth behaviour of diamond with high-nitrogen concentration is investigated in detail.The results show that,with increasing the content of NaN 3 added in synthesis system,the width of synthesis temperature region for growth high-quality diamonds becomes narrower,and the morphology of diamond crystal is changed from cube-octahedral to octahedral at same temperature and pressure,the crystal growth rate is slowed down,nevertheless,the nitrogen concentration doped in synthetic diamond increases.  相似文献   

14.
仇洪波  李惠琪  刘邦武  张祥  沈泽南 《中国物理 B》2014,23(2):27301-027301
The influence of atomic layer deposition parameters on the negative charge density in AlOx film is investigated by the corona-charge measurement. Results show that the charge density can reach up to -1.56×10^12 cm%-2 when the thickness of the film is 2.4 nm. The influence of charge density on cell conversion efficiency is further simulated using solar cell analyzing software (PC1D). With AlOx passivating the rear surface of the silicon, the cell efficiency of 20.66% can be obtained.  相似文献   

15.
刘建华  邓佩珍 《光学学报》1995,15(5):52-557
通过对Ti:Al2O3晶体的不同取向的电子顺磁共振(EPR)研究,认为在93K温度下观测到的g=2.00的强烈各向异性的共振线是来自于Ti:Al2O3晶体中的Ti3+离子2T2g能态的中间能级1E1/2的顺磁共振吸收。而室温下观察到的g≈2.00的吸收线是由Ti3+离子2T2g能态上能级2A1的共振吸收产生的。由晶体场理论进行的计算与上述结果基本符合。  相似文献   

16.
This paper reports that the Tm^3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The roomtemperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Ω2=9.3155×10^-20 cm^2, Ω4=8.4103×10^-20 cm^2, Ω6=1.5908×10^-20 cm^2, the fluorescence lifetime is calculated to be 2.03 ms for ^3F4 → ^3H6 transition, and the integrated emission cross section is 5.81×10^-18 cm^2. Room-temperature laser action near 2μm under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuouswave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06μm with spectral bandwidth of -13.6 nm.  相似文献   

17.
No-noble metal CeO2-TiO2 catalysts prepared by sol-gel method were developed and examined for catalytic wet air oxidation (CWAO) of acetic acid. The structure of the catalysts was measured by BET, SEM, XRD, XPS and DTA-TG. We investigated the effect of the interactions of Ce and Ti on the structure of CeO2-TiO2 catalysts. The mechanisms of the relationships between the different content of Ti and the activity of CeO2-TiO2 catalysts were discussed. The results showed that the average crystal size of CeO2 decreased and the surface areas increased; the low valence of Ce3+ increase, and the chemisorbed oxygen slightly decreased with the increase of Ti content on the surface of CeO2-TiO2 catalysts. The order of the activity in CWAO of acetic acid followed: Ce/Ti 1/1 > Ce/Ti 3/1 > Ce/Ti 1/3 > Ce/Ti 5/1 > CeO2 > TiO2 > no catalyst. In CWAO of acetic acid, the optimal atomic ratio of Ce and Ti was 1, and the highest COD removal was over 64% at 230 °C, 5 MPa and 180 min reaction time over Ce/Ti 1/1 catalyst. The excellent activity and stability of CeO2-TiO2 catalysts was observed in our study.  相似文献   

18.
The effect of low pressure radio frequency (rf) plasma treatment on TiO2 surface states has been studied using X-ray photoelectron spectroscopy. Three different oxidation states of oxygen in untreated TiO2 powder were observed, which suggests the existence of adsorbed water and carbon on the surface. The ratio of oxygen to titanium (O/Ti) was decreased for the low ion dose plasma treated samples due to desorption of water from the surface. In the case of Ti 2p about 20% of surface states were converted to Ti3+ 2p3/2 state after plasma treatment with a very good stability, whereas untreated TiO2 remained mostly as Ti4+ state. A rapid decrease in the ratio of carbon to titanium (C/Ti) at TiO2 surface was also observed after plasma treatment and more than 90% of carbon atoms were removed from the surface. Therefore, the plasma treatment of TiO2 has advantages to surface carbon cleaning, increasing O and Ti3+ surface states, hence improving the activity of TiO2 for different environmental, energy and biological applications.  相似文献   

19.
基于密度泛函的第一性原理,系统研究了合金化掺杂过渡金属(TM=Sc,Ti,Y)和IIA族元素(M=Ca,Sr,Ba)对MgH2(金红石和萤石结构)的热力学稳定性的影响。结果表明,在低掺杂量(<20%) 时,MgH2的萤石结构比金红石结构相对更稳定。掺杂Ti,Sr,Ba时,MgH2的结构发生了失稳现象。MgH2由金红石结构转变到萤石结构的掺杂TM和M的比例分别大约在20%和40%左右。Mg0.5Ba0.52萤石结构的形成焓比MgH2萤石结构高约0.3 eV,表明其放氢温度在标准大气压下将远低于纯MgH2。理论计算数据与实验数据有很好的一致性.  相似文献   

20.
Al2O3:Si,Ti, prepared under oxidizing condition at high temperature, gives PL emission around 430 nm when excited with 240 nm. The Al2O3:C, TL/OSL phosphor, also shows emission around 430 nm, which corresponds to characteristic emission of F-center. Thus, to identify the exact nature of luminescent center in Al2O3:Si,Ti, fluorescence lifetime measurement studies were carried out along with the PL,TL and OSL studies. The PL and TL in Al2O3:Si,Ti show emission around 430 nm and the time-resolved fluorescence studies show lifetime of about 43 μs for the 430 nm emission, which is much smaller than the reported lifetime of ∼35 ms for the 430 nm emission (F-center emission) in Al2O3:C phosphor. Therefore, the emission observed in Al2O3:Si,Ti phosphor was assigned to Ti4+ charge transfer transition. Fluorescence studies of Al2O3:Si,Ti do not show any traces of F and F+ centers. Also, Ti4+ does not show any change in the charge state after gamma-irradiation. On the basis of the above studies, a mechanism for TSL/OSL process in Al2O3:Si,Ti is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号