首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
碳化钒作碳源合成金刚石   总被引:4,自引:0,他引:4       下载免费PDF全文
 以重量比为1∶6的VC和Ni70Mn25Co5合金组成的体系,经6.0 GPa的高压力和1 500 ℃的高温处理20 min后,样品经X射线衍射分析表明VC发生分解,游离出的C生成了石墨和金刚石;该体系生成的金刚石多呈侵蚀性表面,平均粒度约为20 μm。  相似文献   

2.
高温高压下B4C合成金刚石的研究   总被引:10,自引:1,他引:9       下载免费PDF全文
 压力为5.7~6.0 GPa及1 370~1 500 ℃温度范围内,B4C在Ni70Mn25Co5系统中,高压相变为金刚石。合成的金刚石为深黑色,含硼量大于1wt%。粒度为20 μm左右,晶形多为立方体与八面体的各种聚形。反应后的金属触媒中,存在Ni2B等硼化物;非金属残留物中,存在B13C2等高硼碳化物。  相似文献   

3.
 利用热力学中经典的ΔG<0判定法,探讨了Fe基触媒合成金刚石晶体生长中的碳源问题,在计算中考虑了各物相的体积随温度和压力的变化。结果表明:在金刚石形成之前,就有大量Fe3C形成,而在触媒法合成金刚石的温度和压力范围内,Fe3C→C(金刚石)+3γ-Fe反应自由能和石墨→金刚石相变自由能均为负值,但前者比后者的绝对值更大,这说明前者更容易发生。因此,从热力学角度看,Fe3C的形成降低了石墨转变为金刚石所要越过的势垒,使用Fe基触媒合成金刚石单晶的生长来源于Fe3C的分解而不是石墨的直接转化。同时推导出在1200 K以上石墨-金刚石的平衡p-T关系:peq(GPa)=1.036+0.00236T (K),与F.P.Bundy的平衡线非常接近,证明了本热力学计算方法的可行性。  相似文献   

4.
 研究了超临界流体CO2在石墨-金刚石转变中的触媒作用。实验中,采用Ag2O作为流体触媒的先驱材料,在7.7 GPa压力下,Ag2O在1 200 ℃分解成Ag和O2,O2与石墨套管在高温高压下反应形成CO2超临界流体。研究结果表明,在7.7 GPa和1 500 ℃以上温度条件下,石墨在CO2流体触媒的作用下可转变为金刚石晶体,在1 500~1 700 ℃温度范围内合成出的金刚石具有完好的八面体形貌,与天然金刚石的生长特征非常相似。  相似文献   

5.
含硼条形金刚石的生成与成因探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
 在1 470 ℃、5.9 GPa的高温高压条件下,由Fe55Ni29Co16+B4C体系合成出了十分规则的条形金刚石,这在人工合成金刚石实验中是少见的。并与Ni70Mn25Co5+B4C体系中的情形作了比较,探讨了条形金刚石的形成原因,其分析为获得实用性的条形金刚石提供了可能的途径。  相似文献   

6.
 在60~110 GPa冲击压力(估算温度为2 300~4 800 K)范围内进行了5发原始样品为(Mg0.92,Fe0.08)SiO3顽火辉石的冲击压缩回收实验,对回收样品进行的X射线衍射(XRD)和红外吸收光谱(IR)分析结果表明:(1)回收样品的主相均是单链状结构硅酸盐,而非钙钛矿结构;(2)回收样品中均未观察到氧化物SiO2和(Mg0.92,Fe0.08)O的XRD 和IR特征谱线;(3)回收样品的XRD、IR特征谱线变得简略,并发现了与原始样品有某些不同的特征谱线,随冲击压力增加,这种变化趋于明显;(4) 通过对比冲击压力在85 GPa以下和97 GPa以上回收样品的XRD、IR特征谱线,没有观察到明显的新谱线特征出现。结合先前的冲击Hugoniot状态方程实验数据分析,可以认为:在冲击压缩过程中样品处于钙钛矿结构,在冲击卸载过程中样品发生了由钙钛矿结构向单链状结构的逆转相变;特别是,在实验的温度压力范围内,不可能发生由(Mg0.92,Fe0.08)SiO3向SiO2和(Mg0.92,Fe0.08)O的化学分解相变,顽火辉石的高压相——钙钛矿结构是稳定的。回收样品和原始样品的谱线差异可能对应于高压加载或卸载过程引起的某种晶格畸变,而高压加载导致钙钛矿型顽火辉石晶格畸变的可能性更大。这一结果将对下地幔矿物学模型的建立和下地幔地震波探测结果的解释提供基础物理依据。  相似文献   

7.
 本文把非晶La80Al20在真空中、不同温度及其时间条件下进行退火,以及在6 GPa不同温度退火40 min,并对退火样品的相结构及超导性进行了研究。发现真空中,250 ℃退火的样品晶化成了T>4.2 K、不超导的单相四方La4Al;300 ℃及450 ℃退火的样品晶化成La3Al、α-La、β-La及一些未知杂相,这些多相混合物的TC<6.0 K。在6 GPa 300 ℃及以下温度退火的样品,晶化成单相六角La4Al,其晶格常数与六角La3Al的完全相同,这些样品的TC>5.1 K;6 GPa、350 ℃及以上温度退火的样品,晶化成La3Al相及新未知相H,新相H的TC约为6.3 K。  相似文献   

8.
Fe40Ni40P12B8非晶合金的冲击晶化实验研究   总被引:9,自引:2,他引:7       下载免费PDF全文
 本文研究了Fe40Ni40P12B8非晶合金冲击波加载下的晶化行为,冲击波由二级轻气炮发射的告诉弹丸撞击靶产生。实验结果表明:Fe40Ni40P12B8非晶合金在冲击波加载下,晶化可在加载时间(微秒量级)内发生;晶化的阈值压力在30~50 GPa之间,相应的冲击温度约为510~800 K,晶化析出相与冲击压力有关,低压下析出相是面心立方γ-(Fe, Ni)固溶体和Fe3(P0.37B0.63)化合物,高压下(大于60 GPa)析出相除了面心立方γ-(Fe, Ni)固溶体和Fe3(P0.37B0.63)化合物之外,还包括(Fe, Ni)3P化合物。  相似文献   

9.
 在600~930 K,常压到7 GPa的范围内,对非晶(Fe0.99,Mo0.01)78Si9B13合金等温等压退火30 min。实验表明:其晶化产物α-Fe(Mo, Si)、Fe3B和Fe2B相的析出与所加压力密切相关。压力使非晶(Fe0.99,Mo0.01)78Si9B13合金的晶化温度和亚稳Fe3B相的析出温度下降,在一定的压力和温度下,亚稳Fe3B相将向稳定Fe2B相转变,其转变温度随压力而变化。还对非晶(Fe0.99,Mo0.01)78Si9B13合金的晶化和亚稳Fe3B到稳定Fe2B转变的热力学机制进行了讨论,并给出Fe3B向Fe2B的相转变方程。  相似文献   

10.
 用阻抗匹配法和电探针技术在48~140 GPa冲击压力范围内对化学组分为(Mg0.92, Fe0.08)SiO3、初始密度为3.06 g/cm3的天然顽火辉石进行了冲击压缩实验。根据本工作13发实验数据,结合McQueen等人的数据可以看出,(Mg0.92, Fe0.08)SiO3顽火辉石在冲击压缩过程中,大约经历三个明显区域:低压相区,压力范围为0~40 GPa;混合相区,压力范围为40~67 GPa;高压相区,压力范围为68~140 GPa。在低压相区,D-u关系已由McQueen给出;而在高压相区(68~140 GPa),可由本实验数据得到。由叠加原理计算得到的混合物(Mg0.92, Fe0.08)O(Mw)+SiO2(St)的D-u关系及p-ρ关系曲线明显偏离了实验数据的拟合曲线,从而排除了在高达140 GPa冲击压力下,钙钛矿结构的(Mg0.92, Fe0.08)SiO3发生向氧化物化学分解相变的可能性。对高压相区的实验数据进行拟合,可以得到(Mg0.92, Fe0.08)SiO3钙钛矿的Grüneisen参数γ。通过三阶Birch-Murnaghan有限应变状态方程,由冲击波实验数据得到了零压等熵体积模量K0S=259.6(9) GPa及其对压力的一阶偏导数K′0S=4.20(5),其ρ0=4.19 g/cm3。(Mg0.92, Fe0.08)SiO3钙钛矿冲击压缩下的密度数据与PREM密度剖面吻合很好,支持钙钛矿为主要成分的下地幔模型。  相似文献   

11.
 研究了炸药爆轰合成的纳米金刚石粉在高温(约1 600 K)、高压(5.2 GPa)条件下的行为。将纳米金刚石粉与粉末合金(Ni70Mn25Co5、100#)混合、压制成圆片,与合金片 (Ni70Mn25Co5)和人造石墨片一起交替放入高温高压合成腔体内,进行高温高压实验。实验结果表明:在高温高压条件下,纳米金刚石粉不能长大,反而石墨化了;在相同的高压和保温时间条件下,随着温度的降低,纳米金刚石粉的石墨化程度减弱,纳米金刚石粉的纳米颗粒长大,可长成0.1 mm尺寸的金刚石颗粒(温度为1 070 K左右)。而在此条件下,人造石墨不能合成金刚石,一般金刚石晶体要变成石墨相。这进一步表明,纳米金刚石颗粒表面的活性使得它可以在较低的温度下长成较大颗粒的金刚石。  相似文献   

12.
石墨、菱铁矿与超临界水反应的实验研究   总被引:8,自引:2,他引:6       下载免费PDF全文
 为研究地球深部无机成烃的机制,在金刚石压腔(DAC,温度为800~1 500 ℃,压力略大于1 GPa)中进行了石墨和菱铁矿分别与超临界水反应的实验研究。用气相色谱法分析了气体产物的组成,发现其中均有大量的甲烷生成,并伴有CO2和CO;此外还有少量其它烃类。上述结果意味着在地球深部高温高压条件下,含碳物质与超临界水反应可能是一种新的、重要的成烃机制。  相似文献   

13.
 以化学水解法合成的β-FeOOH纳米微粉(平均粒径在12 nm左右)为原料,分别在0.0~4.5 GPa和200~350 ℃的压力和温度范围进行冷压和热压处理。实验结果表明,冷压对β-FeOOH纳米固体的结构没有明显影响,但却使它的热致相变(从β-FeOOH相到α-Fe2O3相)温度从常压下的203.8 ℃提高到4.5 GPa压力下的274 ℃,接近常规体相材料的相变温度。而在一定的热压条件处理下,首次发现了从β-FeOOH相到α-FeOOH相的结构转变,并在4.5 GPa、200 ℃的热压条件下得到了转变过程中的一个新的亚稳相。从压力和温度对纳米微粒的作用角度,对上述实验结果进行了讨论。  相似文献   

14.
 采用金刚石对顶砧及原位同步辐射实验技术,对高温高压有机催化反应制备的氮化碳材料,进行了室温及直到44 GPa压力条件下的原位高压同步辐射X射线衍射研究,并用最小二乘法拟合了样品的Murnaghan型等温状态方程。结果表明,在室温及直到44 GPa压力条件下,石墨相C3N4和待定的正交相CN材料都是稳定的,没有发生明显的相变,推测正交相CN材料可能是原始材料三聚氰胺和三聚氰氯在高温高压条件下催化热解产生的某种高分子有机聚合物。  相似文献   

15.
 详细考察了三氧化二硼在高温高压条件下的相变过程。研究结果表明,在高温高压条件下,三氧化二硼经历了从立方晶系向六方晶系、正交晶系和非晶相的相变。文中还比较详细地讨论了高温、高压两种因素对结构相变的影响,以及静高压熔态淬火方法在非晶态材料制备方面所具有的独到之处。  相似文献   

16.
纳米SiO2形成柯石英的p-T相图   总被引:1,自引:0,他引:1       下载免费PDF全文
 使用纳米SiO2粉体为原料,在2.0~4.2 GPa、150~1200 ℃范围内进行了一系列的高压高温实验研究,得到了该压力温度范围内晶化产物α-石英与柯石英的p-T相图,而且该相图中的相边界在650 ℃以下斜率为负,在650 ℃以上基本水平。通过X射线衍射仪(XRD)、Raman光谱仪(Raman)、傅立叶红外光谱仪(FT-IR)、DSC-TGA差热分析仪(TG-DTA)-等表征手段,发现纳米SiO2原粉中水分(包含Si-OH和吸附水)的存在能显著降低合成柯石英的温度和时间,在4.2 GPa压力下得到了目前合成柯石英的最低温度190 ℃。常压下,合成的柯石英在800 ℃以下能够稳定存在,在1 000 ℃以上转化为α-方石英。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号