首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   4篇
  国内免费   1篇
化学   2篇
力学   1篇
物理学   6篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
 研究了炸药爆轰合成的纳米金刚石粉在高温(约1 600 K)、高压(5.2 GPa)条件下的行为。将纳米金刚石粉与粉末合金(Ni70Mn25Co5、100#)混合、压制成圆片,与合金片 (Ni70Mn25Co5)和人造石墨片一起交替放入高温高压合成腔体内,进行高温高压实验。实验结果表明:在高温高压条件下,纳米金刚石粉不能长大,反而石墨化了;在相同的高压和保温时间条件下,随着温度的降低,纳米金刚石粉的石墨化程度减弱,纳米金刚石粉的纳米颗粒长大,可长成0.1 mm尺寸的金刚石颗粒(温度为1 070 K左右)。而在此条件下,人造石墨不能合成金刚石,一般金刚石晶体要变成石墨相。这进一步表明,纳米金刚石颗粒表面的活性使得它可以在较低的温度下长成较大颗粒的金刚石。  相似文献   
2.
炸药爆轰制备纳米石墨粉储放氢性能实验研究   总被引:5,自引:0,他引:5       下载免费PDF全文
介绍了一种新的制备纳米石墨粉的方法——炸药爆轰法.通过对爆轰合成的黑色粉末进行x射线衍射分析,确认其为六方结构的纳米石墨,平均晶粒度为1.86—2.61nm.用BET气体吸附仪测试纳米石墨粉的比表面积约为500—650m2/g,由比表面积计算得到的纳米石墨粒度为4.41—6.85nm.在室温(≈290K)和12MPa压力条件下对纳米石墨粉进行储放氢气性能测试,结果表明纳米石墨粉样品的储放氢量为0.33wt%—0.37wt%.在相同实验条件下,纳米石墨粉原始样品的储放氢能力较原始纳米炭纤维(0.15wt%—0.35wt%)和多壁碳纳米管(0.15wt%—0.20wt%)的储放氢能力略强,但低于超级活性炭(0.92wt%—0.98wt%).纳米碳材料的比表面积在其储放氢实验中起关键作用. 关键词: 爆轰 纳米石墨粉 比表面积 储放氢量  相似文献   
3.
炸药爆轰合成纳米金刚石的拉曼光谱和红外光谱研究   总被引:5,自引:0,他引:5  
用负氧平衡炸药爆轰法合成纳米金刚石,并用粉末X射线衍射(XRD)仪、激光Raman光谱仪和红外光谱仪等分析仪器对其结构进行表征。XRD结果表明,纳米金刚石为立方结构,由于其内部结构的高密度缺陷、杂质原子的夹杂使谱线偏离,晶格常数比静压合成的大颗粒金刚石大0.72%。由于金刚石晶粒细小,Raman光谱特征峰产生宽化,并且向小波数方向偏移了3cm^-1,此外在纳米金刚石中还含有极少量的石墨。红外光谱测试结果中,31422cm^-1吸收峰为O-H伸缩振动峰;在1634cm^-1出现了H2O的弯曲振动峰,表明在纳米金刚石样品粉末中含有水分;2930和2857cm^-1是CH2的反对称和对称伸缩振动吸收峰;2971cm^-1是CH3的反对称伸缩振动吸收峰,说明样品中存在极少量的碳氢化合物;1788cm^-1吸收峰为C=O伸缩振动吸收峰。文章从纳米金刚石的生成机理上分析了产生这些峰位的原因,结果表明纳米金刚石属于Ⅰ型金刚石,在它之中含有IaA型和Ib型金刚石,IaA型金刚石的含量比Ib型金刚石多。  相似文献   
4.
 采用陆学善、梁敬魁提出的方法,利用纳米金刚石的X射线衍射强度,计算出它的德拜特征温度为411.7 K,比高温高压合成出的大颗粒金刚石单晶的德拜特征温度(2 200 K)低了许多;且其原子晶格振动的振幅比高温高压合成得到的大颗粒金刚石单晶原子的振幅增大了4.37倍;用Lindemann公式计算出纳米金刚石的熔点为2 070 K,约为高温高压合成出的大颗粒金刚石单晶熔点(4 400 K)的一半。这将导致纳米金刚石原子间结合力的减弱,势必造成其活性的增大,从而引起物理、化学性能的改变。  相似文献   
5.
爆轰合成超分散金刚石的实验研究   总被引:3,自引:1,他引:2  
介绍了在密封钢容器内用负氧平衡炸药爆轰合成超分散金刚石的实验研究工作。包括:实验设备的建立、配置;最适宜的炸药成分、配比和生成条件和选取;化学分离以及超分散金刚石结构、属性的测试和分析等。  相似文献   
6.
介绍了一种制备纳米石墨粉的新方法——负氧平衡炸药爆轰法. 对合成的黑粉产物进行x射线衍射分析,确认其为石墨结构,平均晶粒度为2.58 nm. 透射电子显微分析的结果表明,炸药爆轰法制备的黑粉为六方结构的纳米石墨粉,颗粒呈球形或椭球形. 用小角x射线散射法测定纳米石墨粉的粒度分布在1—50 nm,有92.6wt%的粉末粒度小于16 nm. 平均粒径为8.9 nm. 纳米石墨粉的比表面积约为500—650 m2/g. 在六面顶压机中用纳米石墨粉在Fe粉触媒的作用下进行金刚石的高压合成实验 关键词: 纳米石墨粉 爆轰 金刚石 合成  相似文献   
7.
炸药爆轰法制备的纳米石墨粉的拉曼光谱   总被引:7,自引:2,他引:5  
负氧平衡炸药爆轰法合成的纳米石墨粉,是一种新型的具有良好实用前景的纳米粉体材料。采用负氧平衡炸药梯恩梯(TNT),在分别充有氮气、氩气、二氧化碳等保护性气体、压力为0.25~2atm的密闭容器内爆轰制备了纳米石墨粉。用激光拉曼光谱对制备的样品进行了测试,结果表明样品为石墨结构。纳米石墨粉的Raman峰与块体石墨相比,其峰位向高波数方向偏移了约5cm^-1。纳米石墨粉Raman峰的半高宽约为22cm^-1,由此可计算出纳米石墨粉的颗粒大小为2.97~3.97nm。与高纯石墨Raman峰相比,纳米石墨粉的Raman峰由于尺寸效应出现了蓝移现象,并对此现象进行了讨论。用X射线衍射仪(XRD)和透射电子显微镜(TEM)测定了纳米石墨粉的物相,并对其颗粒粒径进行了估算,其结果为2.58nm(酸处理前)和1.86nm(酸处理后),与Raman光谱的结果基本吻合。  相似文献   
8.
炸药爆轰合成纳米石墨的红外光谱研究   总被引:2,自引:0,他引:2  
石墨是碳材料中最常见的结晶状态,它具有耐高温、抗腐蚀、自润滑、无毒及价格低廉等特点,广泛应用于润滑剂和添加剂等方面[1].由于高纯纳米石墨粉在某些高新技术领域中有较好的应用前景,近些年来得到开发和应用,如制成复合导电材料、吸波材料及储氢材料等[2].以前有学者用纳米金刚石粉加热相转变[3]和高能球磨[4,5]的方法制备了纳米石墨,在制备碳纳米管时也有石墨的纳米粒子生成[6].但用这几种方法制备纳米石墨,既费时又消耗较大能量,成本非常高.  相似文献   
9.
纳米石墨颗粒粒度的测量与表征   总被引:11,自引:3,他引:8  
介绍了用负氧平衡炸药在密闭容器内爆轰制备的纳米石墨粉;用x射线衍射线线宽法(谢乐公式)、透射电镜观察法(TEM)、激光拉曼散射法、比表面积法和x射线小角散射法等手段,对合成的纳米石墨粉颗粒粒度进行了测量,结果表明炸药爆轰法制备的纳米石墨粉具有六方石墨结构,颗粒呈球形或椭球形,分布在4—9nm之间,平均粒径为8.7nm;在5种测量方法中,用x射线衍射线线宽法(谢乐公式)得到的平均粒径值最小,而用其它4种测量方法所得到的粒径值基本一致。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号