首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   63篇
  国内免费   2篇
化学   1篇
力学   15篇
物理学   78篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   6篇
  2014年   7篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   6篇
  2008年   10篇
  2007年   14篇
  2006年   8篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
1.
AD95陶瓷的层裂强度及冲击压缩损伤机理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
孙占峰  贺红亮  李平  李庆忠 《物理学报》2012,61(9):96201-096201
采用激光位移干涉测试技术测量了AD95 陶瓷在一维应变冲击压缩下的自由面或样品/窗口界面粒子速度剖面, 确定了层裂强度及其与加载应力的变化关系, 在此基础上讨论了冲击压缩损伤程度与加载应力的关系. 研究结果表明: AD95陶瓷发生冲击压缩损伤的阈值应力约为3.7 GPa, 小于其雨贡纽弹性极限(HEL, 约5.47 GPa); 小于阈值应力不发生冲击压缩损伤, 层裂强度随加载应力的增加逐渐增大; 大于阈值应力冲击压缩损伤快速发展, 层裂强度迅速降低; 在HEL附近层裂强度降低到零, 丧失了抗拉能力, 表明材料发生了严重的冲击压缩损伤.  相似文献   
2.
多孔脆性介质冲击波压缩破坏的细观机理和图像   总被引:1,自引:0,他引:1       下载免费PDF全文
喻寅  王文强  杨佳  张友君  蒋冬冬  贺红亮 《物理学报》2012,61(4):48103-048103
本文采用一种具有良好定量性质的离散元模型研究了带孔洞的各向同性脆性介质在细观尺度上的压缩破坏特征. 通过对孤立孔洞、三种简单的孔洞排布方式和大量孔洞随机排布等几种情况的模拟, 认识到了剪切破坏和局域拉伸破坏是冲击波压缩下多孔介质的基本破坏模式; 孔洞之间的损伤贯通会促进孔洞在较低应力下发生塌缩, 但损伤区的应力松弛过程却会对一定范围内的介质起到损伤屏蔽作用; 不同区域中损伤促进和损伤屏蔽的综合效果是在多孔脆性介质中形成一种高损伤区与低损伤区间错排布的奇特损伤分布. 本文的研究结果为深入理解脆性材料冲击波压缩破坏的演化过程和机理提供了细观尺度上的初步物理图像.  相似文献   
3.
张福平  杜金梅  刘雨生  刘艺  刘高旻  贺红亮 《物理学报》2011,60(5):57701-057701
对PZT 95/5陶瓷在直流电场、脉冲方波电场以及半正弦波电场作用下的失效机理进行了理论和实验分析.结果表明:在直流作用下,其失效机理以热-电耦合失效为主;而在脉冲电场作用下,考虑振动冲击效应以及相关的力谱分布,脉宽越短,能量向高频偏移,越可能发生力-电耦合失效;当脉宽增加,PZT 95/5陶瓷失效机理将从力-电耦合失效逐步转变成直流失效模式. 关键词: PZT 95/5 失效机理 直流电场 脉冲电场  相似文献   
4.
电极化后的PZT 95/5铁电陶瓷能够在冲击波作用下快速去极化并释放束缚电荷,形成高功率的瞬态输出电能。对于垂直于极化方向的冲击波加载情况,通过将去极化过程中的铁电陶瓷等效为电流源、电容和电导的并联电路,综合考虑冲击波压力对波速和去极化相变过程的影响,以及冲击波前、后铁电陶瓷的介电常数和电导率变化,建立了描述冲击波垂向加载下PZT 95/5铁电陶瓷去极化和放电过程的模型,解析获得了铁电陶瓷的放电电流表述。在此模型基础上,开展了短路和电阻负载条件下PZT 95/5铁电陶瓷在冲击放电过程中的输出电流特征分析,并与相关实验结果进行了对比。结果表明:模型能较好地模拟实验观测的铁电陶瓷PZT 95/5的冲击放电过程,以及冲击波压力、负载电阻等对冲击放电输出电流的影响规律。  相似文献   
5.
TiO2的冲击波活化及其光催化活性   总被引:14,自引:0,他引:14       下载免费PDF全文
实验研究了金属氧化物催化剂TiO2在经受不同的冲击波压力处理后,对H2S脱氢反应的光催化活性变化。结果表明,与未冲击样品相比,冲击波处理后TiO2的光催化活性得到了明显提高。在16 ̄34GPa的实验压力范围内,催化活性提高了2 ̄3倍,初步分析认为,冲击波处理使样品晶粒中生成大量残余应变和位错缺陷,以及使TiO2能隙宽度减小,这是光催化活性提高的主要原因。  相似文献   
6.
冲击波温度和压力对二氧化钛相变的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
 介绍了一种简便易行的降低疏松固体物质冲击波温度的方法,其要点是用液体石蜡充填样品的空隙。以用粉末锐钛矿压装成型的样品为例,对比了不充填和充填液态石蜡时冲击波作用的结果。在同样的冲击加载条件下(均为钢飞片,撞击速度为3.16 km/s),估算两种样品中达到的压力分别为36.3 GPa和46.8 GPa,平均温度分别约为4.7×103 ℃和2.0×103 ℃,即:充填液态石蜡的样品中压力增加了约10 GPa,但平均温度降低了近3×103 ℃。对冲击后回收样品的分析结果表明,不充填石蜡样品的主要产物为金红石,即冲击波产生的高温起了主要作用。而充填液态石蜡时,主要生成β-TiO2高压相,即高压起了主要作用。  相似文献   
7.
利用分子动力学方法模拟计算了单晶铜中纳米孔洞在沿〈111〉晶向冲击加载下增长的早期过程.测量发现不同加载强度下等效孔洞半径随时间近似成线性变化.观测到单孔洞增长的两种位错生长机理:加载强度较低时,只在沿着冲击加载方向的孔洞顶点附近区域有位错的成核和运动;而随着加载强度超过一定阈值,在沿冲击加载和其垂直方向的孔洞顶点区域都观察到位错的成核和运动.在前一种机理作用下,孔洞只沿加载方向增长;在后一种机理作用下,孔洞同时沿加载和垂直于加载方向增长.分析孔洞表面原子的位移历史,发现沿加载及与其垂直方向的孔洞顶点沿径向的速度基本恒定,由此提出了一个孔洞生长模型,可以解释孔洞增长的线性生长规律. 关键词: 纳米孔洞 分子动力学 冲击加载 位错  相似文献   
8.
The micro-void growth by dislocation emission under tensile loading is explored with focus on the influence of crystal orientations. Based on the elastic theory, a dislocation emission criterion is formulated. It is predicted that the preferential location of dislocation nucleation and its threshold stress are dependent on the crystal orientation. Large-scale molecular dynamics (MD) simulations are also performed for single crystal copper to illustrate the dislocation evolution pattern associated with a nano-void growth. The results are in line with those given by the theoretical prediction. As revealed by MD simulations, the characteristics of void growth at micro-scale depend greatly on the crystal-orientation.  相似文献   
9.
对材料损伤破碎规律的分析是研究材料损伤断裂行为的一种有效途径。本文着重介绍了高应变率加载下材料损伤破碎规律的研究进展、基于损伤断裂机理的研究以及材料损伤破碎过程自相似性的分形理论研究,讨论了材料损伤破碎规律与材料自身属性和外部加载条件的相互关系。  相似文献   
10.
采用轻气炮加载技术和激光速度干涉(VISAR)测速技术相结合,对不同拉伸应变率条件下20钢的层裂特性进行了实验研究。通过改变飞片和样品的几何尺寸来调整拉伸应变率的大小,研究了拉伸应变率对20钢层裂强度的影响。实验的拉伸应变率的变化范围为104~106 s-1,最大拉伸应变率接近激光加载所能产生的拉伸应变率,相比激光加载,薄飞片技术容易保证一维应变条件。实验结果显示20钢的层裂特性明显依赖着拉伸应变率的大小,106 s-1条件下层裂强度比104 s-1时提高近70%。基于对数值计算结果的分析,讨论了影响层裂强度的主要外载荷因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号