首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物传感器是利用生物分子探测生物反应信息的器件,被列为新世纪五大医学检验技术之一,是现代生物技术与微电子学、化学等多学科交叉结合的产物。而微电子机械系统(MEMS)技术可在微米到纳米的尺度上制造固态传感器,并易与信息处理电路集成在一块芯片上,为生物微传感器实现小型化、便携式、低成本,高灵敏度的片上系统提供了有力技术支持。特点及分类MEMS生物传感器由分子识别元件和信号转换器组成,分子识别元件即感受器,由生物活性物质构成,直接接触待检测物质,具有分子识别能力,有的还能放大反应信号。现在识别元件已不仅仅限于生物活性…  相似文献   

2.
生物传感器的应用   总被引:4,自引:0,他引:4  
何星月  刘之景 《物理》2003,32(4):249-252
综述了生物传感器的类型、基本原理、目前的研究现状及应用情况。生物传感器是以生物分子作为敏感元件的一类新兴传感器,将化学信号、热信号、光信号转化成电信号或者直接产生电信号予以放大输出,从而得到检测结果。生物传感器广泛应用于食品工业、环境监测、发酵工业、军事领域和临床医学等方面。主要用于一些食品和污染物浓度的测量,微生物呼吸活性的测定,微生物培养方法的选择等,此外,还可以作为水处理设备的终端。可以预料,生物传感器将向着微型化、实用化、多样化和人工智能化的方向发展,并且还将用于对生物功能进行人工模拟,研究人工感官。生物传感器具有快速、准确、方便等优点,具有广阔的应用前景,必将在市场上开辟出一片新的天地。  相似文献   

3.
周剑  李跃新 《应用声学》2016,24(3):11-13
针对应用于生物体内特征物质检测与跟踪的电化学传感器的其智能化和集成化问题,本文提出了一种基于片上系统的支持实时数据自动检测的电化学传感器。首先,将应用于电化学传感器结构,通过将测量样品、检测溶液接口、多电极和检测传导器等单元集成在片上系统,结合信号转换和电源装置,实现电化学传感器的独立计算、存储和通信功能。接着,通过实现待测量物多电极、检测溶液电极子和单片机逻辑控制的协同计算满足自动检测需求。最后,基于数据整合与自动化处理设计了支持实时数据检测的电化学传感器。验证结果表明,在数据检测精度和实时性方面所提方案明显优于传统的非片上系统电化学传感器。  相似文献   

4.
人体内的生物小分子对维持生命体健康具有重要影响,此类分子参与生命体的血液循环及免疫系统,因此检测生命体中生物小分子对研究小分子在生命体中的生理功能有着重要的意义。傅里叶变换-表面等离子体共振(Fourier transform-surface plasmon resonance,FT-SPR)光谱技术具有操作简便、灵敏度高、所需样品少、可实时检测等优点,近年越来越多应用于分子的检测。对于部分分子尤其是分子量非常小的生物小分子,FT-SPR直接检测法存在信号稳定性差、灵敏度不高等缺点,因此可以针对不同的检测目标构建系列SPR小分子生物传感器通过信号扩增弥补以上缺点。该研究分类并列举了用于小分子检测的SPR免疫传感器(直接检测法、“三明治”法、竞争检测法以及抑制检测法)、SPR分子印迹传感器以及其他基于SPR传感器,系统综述了SPR技术检测小分子的研究进展,并对其发展远景进行了展望。  相似文献   

5.
为了实现对生物分子间相互作用过程的实时、灵敏、快速监测,获得生物分子的有无、浓度与相互作用的动力学参数信息,本文设计了基于光纤生物传感器的生物亲和性检测方法。首先,针对光干涉生物亲和性传感检测系统的光学传输系统"Y"型分叉光纤与光纤探针之间的耦合问题,提出了自聚焦透镜与石英光纤耦合结构,该耦合结构偏心公差能够达到0.02 mm,倾斜公差能够达到0.1°;针对干涉光谱信号的高频噪声问题,采用一种改进的经验模态分解干涉光谱信号处理方法,有效避免了干涉光谱曲线滤波处理后极值点位置的偏移;同时采用局部拟合极值点计算生物分子膜层厚度的方法,将生物分子膜层厚度的分辨率提高到50 pm。利用所搭建的光干涉生物亲和性检测系统,建立了HER3-IgG1抗体药物利用金纳米粒子进行信号放大,实现对其浓度进行定量检测的新方法,检测过程中无需清洗,不产生交叉污染。实验结果表明:系统检测限能达到0.082 6 μg/mL,该系统具有检测时间短,测量准确、精度高、成本低廉等特点,能够应用于药代动力学研究中。  相似文献   

6.
提出了一种基于反向表面等离子体共振原理,由Ge_(20)Ga_5Sb_(10)S_(65)-钯-石墨烯分子-生物分子四层结构构成的新型生物传感器。当生物分子之间发生相互作用时,引起生物分子层折射率的变化,从而导致反向表面等离子体共振角的偏移。在此基础上,根据传输矩阵法推导了传感器的输出光谱,重点讨论了本文提出的传感器与传统传感器相比,在灵敏度、分辨率、动态检测范围以及检测信号信噪比方面取得的进展。另外,通过对比研究,深入分析了辅助介质层石墨烯厚度对传感器性能的影响。最后,利用近红外光作为提出的传感器的入射光,分析了在近红外区域传感器性能的改善。研究结果表明:单层石墨烯分子使传感器性能达到最佳;反向表面等离子共振峰强度约为入射光强的80%~90%,使传感器的输出信号具有较大的信噪比;在可见光区域,当入射光波长为632.8nm时,提出的反向表面等离子共振生物传感器的分辨率是基于SiO_2棱镜耦合反向表面等离子共振生物传感器的1.9倍,是传统表面等离子共振生物传感器的3.5倍,提出的传感器的动态检测范围约是现有传感器的2倍;利用Ge_(20)Ga_5Sb_(10)S_(65)棱镜可使反向表面等离子共振生物传感器检测光波长由可见光区域扩展到近红外区域,当入射光为1 000nm时,传感器的分辨率是可见光区域的3~4倍。该研究对基于反向表面等离子体共振原理生物传感器的实现与发展具有重要意义。  相似文献   

7.
金纳米簇是一种制备工艺简单、具有分子级尺寸和量子效应的新型发光材料,近年来在化学发光检测中得到了广泛应用,特别是较多应用于体外生物检测.本文综述了金纳米簇化学发光(含电化学发光)体系在体外生物检测中的应用进展.首先,阐释了金纳米簇的合成方法、结构、性质及其化学发光基本原理;其次,总结了国内外近年来基于该体系的体外生物检...  相似文献   

8.
光学生物传感器在新药研制和生命科学等领域得到广泛关注,重点对基于回音壁谐振模的无标记光学生物传感器做了评述。根据谐振腔结构将传感器分为三类。基于微球的生物传感器由于微球腔的高品质因子而成为最初研究的重点,已实验研究了对蛋白质分子、病毒和细菌的传感响应,建立了基于单光子谐振能量和微扰理论的理论模型;基于微盘的生物传感器能够利用成熟的平面光刻微加工技术,传感构想提出更早,但直到回流热处理技术的应用才使得微盘品质因子大幅提高,从而实现了单分子测量;基于微环的生物传感器具有简单的谐振模式,有利于信号探测,已采用聚合物,氮化硅,以及硅基二氧化硅等材料制作成功,作为其在三维上的扩展,微管式传感器由于能够将光通道和流体通道合二为一而在近年得到关注。  相似文献   

9.
光寻址电位传感器的幅度检测方法易受噪声干扰,灵敏度差,信噪比和精度低,且受调制光源的影响较大,影响检测结果的准确性.为此提出了一种基于正交相位检波的光寻址电位传感器检测方法.该方法是将光寻址电位传感器的输出光电流信号分别与两路正交信号相乘,通过低通滤波提取直流分量并相除,即可得到光寻址电位传感器的输出信号相位信息.与已有的光寻址电位传感器相位检测方法相比,该方法具有算法复杂度低、实时性高的优点.实验研究了调制光源光强对光寻址电位传感器幅度检测和相位检测的影响,对比分析了光寻址电位传感器的传统幅度检测方法与正交相位检波检测方法对pH检测的灵敏度、线性度及信噪比.结果表明,相比于幅度检测方法,调制光源光强对光寻址电位传感器的相位检测影响更小,在频率为10 kHz,pH的范围为1.68~10.01的情况下,相位检测方法比幅度检测方法测得的灵敏度增加了7 mV/pH,精度提高了14.9 mpH,非线性误差减小了0.003%,均方差减少了0.1051×10^-5,信噪比增加了8.2827 dB.该方法特别适用于弱光下的光寻址电位传感器检测.  相似文献   

10.
基于上转换发光技术的生物传感器及其应用   总被引:8,自引:0,他引:8  
为实现对特定生物分子的高灵敏度快速检测与分析。采用上转换发光材料作为标记物,研制成功一台基于上转换发光技术的新型光学免疫生物传感器。该传感器利用上转换发光材料在红外光激发下发射可见磷光的特性,通过对免疫层析试纸条上经生物反应而结合上去的上转换发光材料颗粒的含量进行检测,计算出被测样品中特定生物分子的浓度。实验结果表明,该传感器具有较好的生物特异性,对兔抗鼠疫免疫球蛋白(IgG)标准样品的检测灵敏度达到ng/ml量级,并在200~6000ng/ml浓度范围内具有良好的线性响应特性,相关系数R^2≥0.95;对鼠疫耶尔森氏菌抗体的敏感性明显高于间接血凝实验,且与免疫印迹检测实验结果具有较好的一致性。该传感器具有稳定、可靠、灵敏的工作性能,符合实际检测与分析的要求。  相似文献   

11.
本文提出了一种用于生物样品检测的高灵敏度太赫兹折射率超材料吸波体传感器.该传感器由2个同心开口金属环组成,是一种多模谐振器.传感器在0.7—2.5 THz频率范围内具有2个独立可调的工作频段,即1.079 THz和2.271 THz,可观测样品在太赫兹波段的不同电磁效应.采用吸收特性、灵敏度等指标评估太赫兹传感器的性能,自由空间中的吸收率超过99.9%,具有较高的频率选择特性,灵敏度达到693.7 GHz/RIU,检测生物样品最小折射率变化量为0.004,传感性能较好.所提出的传感器使用低介电常数的柔性材料,具有生物相容性、便携性等优点,且在0°—60°斜入射角下及4%的制作误差内显示出高度稳定性.此外,通过乙醇-水混合物模拟实验,验证了传感器的检测效果.本文设计的传感器单元结构之间相互作用小、稳定、易制作,能够显著增强光与物质之间相互作用,在太赫兹高灵敏生物传感检测中具有广阔的应用前景.  相似文献   

12.
太赫兹(THz)波,是指频率范围在0.1~10 THz的电磁波,在电磁波谱中处于红外与微波之间。太赫兹波的光子能量相对于可见光更低,1 THz对应的能量大约只有4.14 meV,意味着这将大大减少对生物体内组织器官的辐射而引起的伤害,不会对生物分子产生电离。因此,该波段在基础科学、人体安检、危险品检测、高速通信和医学成像等领域具有重要的潜在应用价值。但在医药和生物探测的应用中,通常需要检测微量的分析物,这就需要更高的灵敏度和检测的准确度。但是现存的检测方法受到太赫兹波强度检测可靠性不高的影响。基于超材料的生物传感可以通过增强局域电磁谐振,实现亚波长分辨,大大提高了传感器的分辨率与灵敏度,引起了人们的广泛关注。超材料是一种人工设计的周期性结构,通过合理设计可以增强局域电磁谐振响应,实现亚波长分辨,大大提高传感器的分辨率与灵敏度。太赫兹超材料传感器为生物传感领域提供了一种新的检测方法,具有灵敏度高、响应速度快、无标记检测等优点。随着微纳加工技术的快速发展,制作超材料太赫兹传感器的成本不断降低,从而在生物医学领域具有非常大的潜在应用价值。基于超材料的太赫兹传感器的研究已成为目前一个非常热门的国际前沿方向。但是关于太赫兹超材料传感器的最新研究进展未见报道,为此通过大量搜集并整理相关资料,综述了太赫兹超材料传感器在各种生物探测场景中的最新应用,分别从医学诊断、食品安全、农药检测等方面展开介绍。最后,对太赫兹超材料在生物传感器的发展和应用前景进行了总结和展望。该研究将为人们充分掌握太赫兹超材料生物传感器的最新应用进展提供重要参考,同时为太赫兹超材料传感器的发展和应用提供方向性的指导。  相似文献   

13.
于晓梅  尚庆虎  江兴流 《物理》2002,31(4):224-228
自从Clark和Lyons在1962年研制出第一个生物传感器以来,探测各种生物和化学分子的生化传感器相继问世.这类传感器的基本原理是通过生化敏感层,被分析分子在敏感层上的物理或化学吸附被换能器转化为电信号.在众多的设计中,将活泼的生化敏感材料涂镀在硅器件表面是一个最有新意的设想.以往的硅生化传感器多设计为膜片式,器件的灵敏度受到限制.硅微机械悬臂梁是一种灵敏度极高的器件,近年来在传感器领域受到关注.文章总结了目前世界上硅基微悬臂梁生化传感器的最新发展动态.对几种硅悬臂梁的设计方法和工作原理进行了讨论,并给出了几种新型微生化气体和液体传感器检测不同有机分子和生物分子的结果.  相似文献   

14.
基于三磷酸腺苷(ATP)适配体与ATP分子作用后可以显著增强电化学发光信号的性能,研究了一种用于ATP含量检测的电化学发光适配体(ECL-aptamer)传感器。通过电沉积方法获得纳米金电极。3′端标记联吡啶钌发光分子的探针DNA通过5′端修饰的巯基自组装到纳米金电极表面,然后与5′端标记二茂铁分子的ATP核酸适配体互补杂交,形成刚性线形的双链DNA,由此构建的传感器产生较弱的电化学发光(ECL)信号。该传感器在ATP溶液中孵化后,由于ATP分子与ATP适配体强的特异性结合,使得适配体分子与探针DNA分子解离,从电极表面脱落进入溶液,此时电极表面的探针DNA在强电解质溶液中可以形成发卡型的茎环结构,产生显著增强的ECL信号。ECL信号强度与ATP浓度的对数值呈线性关系,线性范围为10.0~1.0×10~5 pmol/L,相关系数r=0.995 9,检测限为5.0 pmol/L。该传感器的灵敏度与检测范围高于目前已报道的结果,显示出了ATP检测的应用潜力。  相似文献   

15.
通过简单的一步反应合成了一种新型含硅氧烷基团的苝二酰亚胺(PDI-TES)荧光传感器。结合小角X射线衍射、紫外-可见吸收光谱、荧光光谱和动态光散射等实验方法,阐明了PDI-TES的晶体结构、自组装行为和检测性能。实验结果表明,PDI-TES具有良好的热稳定性和有序的晶体结构。此外,由于Si—O键的断裂,PDI-TES对氟离子具有较高的选择性和灵敏度,检出限低至1.58×10^(-6) mol/L。这些优良的检测性能和简单、低成本的合成方法,有望使PDI-TES成为一种实用的氟离子检测荧光传感器。  相似文献   

16.
微机械生化传感器   总被引:1,自引:0,他引:1  
于晓梅  尚庆虎  江兴流 《物理》2002,31(4):224-228
自从Clark和Lyons在1962年研制出第一个生物传感器以来,探测各种生物和化学分子的生化传感器相继问世。这类传感器的基本原理是通过生化敏感层,被分析分子在敏感层上的物理或化学吸附被换能器转化为电信号。在众多的设计中,将活泼的生化敏感材料涂镀在硅器件表面是一个最有新意的设想。以往的硅生化传感器多设计为膜片式,器件的灵敏度受到限制。硅微机械悬臂梁是一种灵敏度极高的器件,近年来在传感器领域受到关注。文章总结了目前世界上硅基微悬梁生化传感器的最新发展动态。对几种硅悬臂梁的设计方法和工作原理进行了讨论,并给出了几种新型微生化气体和液体传感器检测不同有机分子和生物分子的结果。  相似文献   

17.
通过简单的一步反应合成了一种新型含硅氧烷基团的苝二酰亚胺(PDI-TES)荧光传感器。结合小角X射线衍射、紫外-可见吸收光谱、荧光光谱和动态光散射等实验方法,阐明了PDI-TES的晶体结构、自组装行为和检测性能。实验结果表明,PDI-TES具有良好的热稳定性和有序的晶体结构。此外,由于Si—O键的断裂,PDI-TES对氟离子具有较高的选择性和灵敏度,检出限低至1.58×10~(-6) mol/L。这些优良的检测性能和简单、低成本的合成方法,有望使PDI-TES成为一种实用的氟离子检测荧光传感器。  相似文献   

18.
表面增强拉曼散射光谱的应用进展   总被引:12,自引:6,他引:6  
表面增强拉曼光谱是一种非常有效的探测界面特性和分子间相互作用、表征表面分子吸附行为和分子结构的工具。已成为灵敏度最高的研究界面效应的技术之一,最大范围地应用于研究吸附分子在表面的取向及吸附行为、吸附界面表面状态、生物大分子的界面取向及构型、构象和结构分析;SERS技术也逐渐成为表面科学和电化学领域有力的研究手段,并已在痕量分析乃至单分子检测、化学及工业、环境科学、生物医学体系、纳米材料以及传感器等方面的研究中得到了广泛应用,甚至出现了拉曼技术与其他技术的联用。文章综述了近几年来表面增强拉曼散射作为一种光谱技术在这些应用领域的研究进展以及潜在应用价值;并简单介绍了作者所在实验室的相关工作,特别是富勒烯和碳纳米管材料等领域的一些探讨与研究。  相似文献   

19.
利用光化学法在光纤尖端快速沉积银纳米粒子构建活性层,通过银纳米粒子与探针分子4-巯基吡啶分子中的巯基吸附作用,将探针分子组装在银膜上制备SERS光纤传感器。检测光纤活性端在不同pH缓冲液中探针分子的SERS光谱,对比分析其SERS光谱特征峰强度及拉曼频移的差异,讨论探针分子在不同pH值下结构的变化、与银膜之间夹角的变化,并通过重复实验证明这种SERS光纤pH传感器在实际检测中的应用价值。  相似文献   

20.
彭洪尚  申睿颖  王小卉 《发光学报》2016,37(10):1167-1176
在生物医学领域,溶氧的检测具有十分重要的意义。近年来氧气传感器的研究取得了重要的进展,尤其是纳米尺寸的光学氧气传感器倍受重视。光学氧气纳米传感器具有检测灵敏度高、稳定性好、易于生物功能化等优点,特别适用于在(亚)细胞层次或者生物组织内溶氧的实时检测。本文主要从氧气荧光探针的种类、传感器的基质构成、纳米传感器的构建方法、检测模式和生物医学应用等几个方面出发,结合本研究组在光学氧气纳米传感器的研究进展进行综述,并对其在生物医学领域中的主要应用进行了阐述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号