首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grid-enhanced plasma source ion implantation (GEPSII) is a newly proposed technique to modify the inner-surface properties of a cylindrical bore. In this paper, a two-ion fluid model describing nitrogen molecular ions N_2^+ and atomic ions N^+ is used to investigate the ion sheath dynamics between the grid electrode and the inner surface of a cylindrical bore during the GEPSII process, which is an extension of our previous calculations in which only N_2^+ was considered. Calculations are concentrated on the results of ion dose and impact energy on the target for different ion species ratios in the core plasma. The calculated results show that more atomic ions N^+ in the core plasma can raise the ion impact energy and reduce the ion dose on the target.  相似文献   

2.
A self-consistent two-dimensional (2D) collisionless fluid model is developed to simulate the characteristics of a dual frequency capacitive sheath over an electrode with a cylindrical hole. The model consists of 2D time-dependent fluid equations coupled with Poisson's equation, in which the low-frequency (LF) and high-frequency current sources are applied to an electrode. Thus, the so-called equivalent circuit model coupling with the fluid equations will be able to self-consistently determine the relationship between the instantaneous voltage on the powered electrode and the sheath thickness. The time-averaged potential, electric field, ion density in the sheath and ion energy distributions at the bottom of the hole are calculated and compared for different LF frequencies. The results show that the LF frequency is crucial for determining the sheath structure. The existence of the cylindrical hole on the electrode obviously affects the sheath profile in the parallel to the electrode and makes the sheath profile tend to adapt the contours of the electrode, which is the plasma molding effect.  相似文献   

3.
Some notes and comments on ion acceleration in laser-plasma interaction is given, in particular for the implication of shock, sheath and sealing. A simple model is proposed for ion acceleration by the combination of shock and sheath. The obtained scaling relations between the maximum ion energy and laser parameters (power, pulse duration) as well plasma parameter (plasma density)for example α PL 7/12 Eion,max α TL1/3 and Eion,max α ne2/3,are compared to the previous works. Some deficiencies and implications of model and results are discussed.  相似文献   

4.
We present a calculation scheme with significant modifications and improvements for determining the ionization balance and the ion temperature evolution in an electron beam ion trap (EBIT). The scheme is applied to uranium and nitrogen ions using a specific set of EBIT operating parameters. The calculation results are compared to the experimental data. Rates for the individual atomic processes in EBIT, especially single and multiple charge exchange processes, are discussed. The time evolution of the ion temperatures for uranium and its coolant nitrogen are also given.  相似文献   

5.
A particle-in-cell simulation is developed to study dc plasma immersion ion implantation. Particular attention is paid to the influence of the voltage applied to the target on the ion path, and the ion flux distribution on the target surface. It is found that the potential near the aperture within the plasma region is not the plasma potential, and is impacted by the voltage applied to the implanted target. A curved equipotential contour expands into the plasma region through the aperture and the extent of the expansion depends on the voltage. Ions accelerated by the electric field in the sheath form a beam shape and a flux distribution on the target surface, which are strongly dependent on the applied voltage. The results of the simulations demonstrate the formation mechanism of the grid-shadow effect, which is in agreement with the result observed experimentally.  相似文献   

6.
刘成森  韩宏颖  彭晓晴  昶叶  王德真 《中国物理 B》2010,19(3):35201-035201
A two-dimensional particle-in-cell simulation is used to study the time-dependent evolution of the sheath surrounding a prolate spheroid target during a high voltage pulse in plasma source ion implantation. Our study shows that the potential contour lines pack more closely in the plasma sheath near the vertex of the major axis, i.e. where a thinner sheath is formed, and a non-uniform total ion dose distribution is incident along the surface of the prolate spheroid target due to the focusing of ions by the potential structure. Ion focusing takes place not only at the vertex of the major axis, where dense potential contour lines exist, but also at the vertex of the minor axis, where sparse contour lines exist. This results in two peaks of the received ion dose, locating at the vertices of the major and minor axes of the prolate spheroid target, and an ion dose valley, staying always between the vertices, rather than at the vertex of the minor axis.  相似文献   

7.
Using a dynamic sheath model,we have studied the secondary-electron emission effects at one-dimensional planar dielectric surface in plasma immersion ion implantation.The temporal evolution of the sheath thickness,the surface potential of dielectric,and the ions dose accumulated on the dielectric surface are obtained.The numerical results demonstrate that the charging effects are greatly enhanced by the secondary electron emission effects,so the sheath thickness becomes thinner,the surface potential of dielectric decreases fast and the ions dose accumulated on the dielectric surface significantly increases.  相似文献   

8.
Dual radio-frequency (rf) sources at widely different frequencies are often simultaneously used to separately optimize the plasma parameters and ion energy distributions (IEDs) incident onto a substrate. Characteristics of collisionless dual rf biased-sheaths and IEDs impinging on an insulating substrate are studied with a self- consistent one-dimensional fluid model. In order to describe the sheath dynamics over a wide range of frequency, the model includes all the time-dependent terms in the ion fluid equation. Meanwhile, an equivalent circuit model is used to self-consistently determine the relationship among the instantaneous voltage on the insulating substrate, the instantaneous sheath thickness, and the dual currents applied to the electrode. The numerical results show that some parameters such as the bias frequency and bias power of the lower frequency source are crucial for determining the parameters of dual rf biased-sheaths and IEDs arriving at the insulating substrate.  相似文献   

9.
A Nd:YAG pulsed laser is used to ablate HgCdTe target at different ambient pressures, the emission spectrum is detected by a time- and space-resolved diagnostic technique. It is found that the characteristics of time-resolved emission spectra are influenced by the pressure of background gas. A theoretical model is developed to investigate expansion mechanism of plasma, the time evolution of the propagation distances and the velocities of plasma plume are calculated by the model at pressures of 1.01×105, 1000, and 5 Pa, respectively. The calculated results are well consistent with the experimental data.  相似文献   

10.
We present a one-dimensional time-dependent numerical model for the expansion process of ablation plasma induced by intense pulsed ion beam (IPIB). The evolutions of density, velocity, temperature, and pressure of the ablation plasma of the aluminium target are obtained. The numerical results are well in agreement with the relative experimental data. It is shown that the expansion process of ablation plasma induced by IPIB includes strongly nonlinear effects and that shock waves appear during the propagation of the ablation plasma.  相似文献   

11.
A Nd:YAG pulsed laser is used to ablate HgCdTe target at different ambient pressures, the emission spectrum is detected by a time- and space-resolved diagnostic technique. It is found that the characteristics of time-resolved emission spectra are influenced by the pressure of background gas. A theoretical model is developed to investigate expansion mechanism of plasma, the time evolution of the propagation distances and the velocities of plasma plume are calculated by the model at pressures of 1.01 × 105, 1000, and 5 Pa,respectively. The calculated results are well consistent with the experimental data.  相似文献   

12.
The propagation of a plasma shock wave generated from an Al target surface ablated by a nanosecond Nd:YAG laser operating at 355 nm in air is investigated at the different focusing positions of the laser beam by using a time-resolved shadowgraph imaging technique. The results show that in the case of a target surface set at the off-focus position, the condition of the focal point behind or in front of the target surface greatly influences the evolution of an Al plasma shock wave, and an ionization channel forms in the case of the focal point set in front of the target surface. Moreover, it is found that the shadowgraph with the evolution time around 100 ns shows that a protrusion appears at the front tip of the shock wave if the focal point is at the target surface. In addition, the calculated results of the expanding velocity of the shock wave front, the mass density, and pressure just behind the shock wave front are presented based on the shadowgraphs.  相似文献   

13.
jump conditions of the parameters (mass flow, momentum flow and energy flow) of a shock with current (thereby, electric and magnetic field) in cylindrical non-neutral plasma are presented and derived from Maxwell's equations and two fluid equations for electron and ion fluid. The critical Mach number for the shock existence is calculated, which depends on the shock carried current, the ion charge, and the composition of the magnetic and thermal pressure. The numerical results show that both the strength and profiles of the downstream shock parameters will be affected obviously by the shock carried current, electric and magnetic field in the two-dimensional shock.  相似文献   

14.
The propagation of a plasma shock wave generated from an Al target surface ablated by a nanosecond Nd:YAG laser operating at 355 nm in air is investigated at the different focusing positions of the laser beam by using a time-resolved shadowgraph imaging technique. The results show that in the case of a target surface set at the off-focus position, the condition of the focal point behind or in front of the target surface greatly influences the evolution of an Al plasma shock wave, and an ionization channel forms in the case of the focal point set in front of the target surface. Moreover, it is found that the shadowgraph with the evolution time around 100 ns shows that a protrusion appears at the front tip of the shock wave if the focal point is at the target surface. In addition, the calculated results of the expanding velocity of the shock wave front, the mass density, and pressure just behind the shock wave front are presented based on the shadowgraphs.  相似文献   

15.
Excitation energies and electron impact excitation strengths from the ground states of Ni-, Cu- and Zn-like Au ions are calculated. The collision strengths are computed by a 213-levels expansion for the Ni-like Au ion, 405- levels expansion for the Cu-like Au ion and 229-levels expansion for the Zn-like Au ion. Configuration interactions are taken into account for all levels included. The target state wavefunctions are calculated by using the Grasp92 code. The continuum orbits are computed in the distorted-wave approximation, in which the direct and exchange potentials among all the electrons are included. Excellent agreement is found when the results are compared with previous calculations and recent measurements.  相似文献   

16.
We investigate Si(100) surface morphology evolution under normal-incident Ar^ ions sputtering with low ion flux of 20μA/cm^2. The results indicate that under the low flux ion sputtering, the nanostructuring process of Si(lO0) is governed by the Ehrlich-Schwoebel (ES) mechanism, rather than by the Bradley-Harper (1311) one for the case of high flux (normally the order of 10^2 μA/cm^2 or larger). This work reveals that the ion flux plays an important role in the surface morphology evolution under ion sputtering, and a usually accepted classification that the ES mechanism is related to metal single-crystals under ion sputtering, while the BH one is to amorphous,and semiconductor targets is questionable.  相似文献   

17.
Analytical models of acoustic field excited by a pulsed-laser line source on a cylinder and a coated cylinder were presented.Surface wave dispersive behaviors for a cylinder with a slow coating were analyzed and compared with that of a bare cylinder.Based on this analysis, the laser-generated transient response of the cylindrical Rayleigh wave on cylinder and the perturbed cylindrical Rayleigh wave on coated cylinder and the higher modes were calculated from the models using residue theory and FFT technique.The theoretical results from the superposed waveform of the cylindrical Rayleigh wave and higher modes for both cylinder and coated cylinder agree well with the waveforms obtained from experiment.The transient response of perturbed Raleigh wave on coated cylinder is quite different with cylindrical Rayleigh wave on cylinder because of the guide of surface coating.The results show that the model and numerical method provide a useful technique for quantitatively characterizing coating parameters of coated cylinder by the laser generated surface waves.  相似文献   

18.
The extraction of negative ions inevitably leads to the destruction of the original plasma state. To understand the effect of extraction on a plasma sheath under a weak magnetic filter field, the time-dependent behavior of H~- ion extraction from a negative ion source has been studied by particle-in-cell simulation in the collisionless limit. The simulation results have shown that the plasma sheath would undergo a transient process, in which there exists an edge electrostatic wave that propagates counterclockwise along the wall with a velocity of 4 mm/ns until it reaches the other side of extraction aperture. The thickness of the plasma sheath and the plasma potential both increase greatly at the final quasi-steady-state. For comparison, the results of extracting positive ions are also given.  相似文献   

19.
A radial sputter probe has been developed for the AECR-U as an additional method of producing metal ion beams.Negative voltage is applied to the probe to incite collisions with target atoms,thereby sputtering material into the plasma.The sputter probe is positioned through one of the 6 radial access slots between the permanent hexapole structure of the AECR-U.The probe position can be varied with respect to the inner edge of the hexapole magnet structure.Charge state distributions and peak beam intensities at bias voltages up to-5kV were obtained for gold samples at varying distances of the probe with respect to the plasma.For high charge states production the radial position with respect to the plasma was more sensitive than for the medium and lower charge states.For high charge state ion production the probe was optimized at a distance of 0.6cm inside the chamber wall(4.1cm from the center of the chamber).Stable beams with peak intensities of up to 28eμA of Au~(24 ) and 1.42eμA of Au~(41 ) have been produced using the sputter probe technique. In addition,a solid state circuit under development by Scientific Solutions,Inc which provides a bandwidth up to 100MHz was used to drive the 14GHz klystron amplifier for the LBNL AECR-U ion source.Various broadband and discrete heating modes were tested and the results for high charge state ion production were compared with single frequency heating.  相似文献   

20.
The Raman interaction of a trapped ultracold ion with two traveling wave lasers is studied analytically by series expansion technique without the need of rotating wave approximation and the limitations of both the Lamb-Dicke limit and the weak excitation regime.As an example,a scheme for the preparation of Schrodinger-cat states in such a process is proposed beyond the weak excitation regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号