首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
In this work, bathocuproine (BCP) and bathophenanthroline (Bphen), commonly used in small-molecule organic solar cells (OSCs), are adopted as the buffer layers to improve the performance of the polymer solar cells (PSCs) based on poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV): [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction. By inserting BCP or Bphen between the active layer and the top cathode, all the performance parameters are dramatically improved. The power conversion efficiency is increased by about 70% and 120% with 5-am BCP and 12-nm Bphen layers, respectively, when compared with that of the devices without any buffer layer. The performance enhancement is attributed to BCP or Bphen (i) increasing the optical field, and hence the absorption in the active layer, (ii) effectively blocking the excitons generated in MEH-PPV from quenching at organic/aluminum (Al) interface due to the large band-gap of BCP or Bphen, which results in a significant reduction in series resistance (Rs), and (iii) preventing damage to the active layer during the metal deposition. Compared with the traditional device using LiF as the buffer layer, the BCP-based devices show a comparable efficiency, while the Bphen-based devices show a much larger efficiency. This is due to the higher electron mobility in Bphen than that in BCP, which facilitates the electron transport and extraction through the buffer layer to the cathode.  相似文献   

2.
Different aluminum-doped ZnO (AZO)/metal composite thin films, including AZO/Ag/Al, AZO/Ag/nickelchromium alloy (NiCr), and AZO/Ag/NiCr/Al, are utilized as the back reflectors of p-i-n amorphous silicon germanium thin film solar cells. NiCr is used as diffusion barrier layer between Ag and Al to prevent mutual diffusion, which increases the short circuit current density of solar cell. NiCr and NiCr/AI layers are used as protective layers of Ag layer against oxidation and sulfurization, the higher efficiency of solar cell is achieved. The experimental results show that the performance of a-SiGe solar cell with AZO/Ag/NiCr/Al back reflector is best. The initial conversion efficiency is achieved to be 8.05%.  相似文献   

3.
The introduction of poly(ether urethane) (PEUR) into polymer electrolyte based on poly(ethylene oxide), LiI and I2, has significantly increased the ionic conductivity by nearly two orders of magnitudes. An increment of I3- diffusion coefficient is also observed. All-solid-state dye-sensitized solar cells are constructed using the polymer electrolytes. It was found that PEUR incorporation has a beneficial effect on the enhancement of open circuit voltage VOC by shifting the band edge of TiO2 to a negative value. Scanning
electron microscope images indicate the perfect interfacial contact between the TiO2 electrode and the blend electrolyte.  相似文献   

4.
A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15nm)/a-Si:H(10nm)/ epitaxial c-Si(47μm)/epitaxial c-Si(3μm) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer S d (Sd =PH3 /(PH3 +SiH4 +H2 )) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with S d increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at S d = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35mA/cm2 , a fill factor of 63.3%, and a conversion efficiency of 7.9%.  相似文献   

5.
We investigate the photovoltaic properties of hybrid organ/c solar cell based on the blend of poly[2-methoxy-5-(2- ethylhexoxy-l,4-phenylenevinylene) (MEH-PPV), C60 and titanium dioxide (TiO2) nanotubes. In comparison of the composite devices with different TiO2:[MEH-PPV +C60] weight ratios of lw$.% (D1-1), 2wt.% (D1-2), 3wt.% (D1-3), 5wt.% (D1-4), 10wt.% (D1-5) and 20wt.% (D1-6), it is found that the device Dl-a exhibits the best performance. The conversion efficiency is improved by a factor of 3 compared with the MEH-PPV:C60 device.  相似文献   

6.
游海龙  张春福 《中国物理 B》2009,18(5):2096-2100
<正>In this paper,the effects of optical interference and annealing on the performance of P3HT:PCBM based organic solar cells are studied in detail.Due to the optical interference effect,short circuit current density(JSC) shows obvious oscillatory behaviour with the variation of active layer thickness.With the help of the simulated results,the devices are optimized around the first two optical interference peaks.It is found that the optimized thicknesses are 80 and 208 nm.The study on the effect of annealing on the performance indicates that post-annealing is more favourable than pre-annealing.Based on post-annealing,different annealing temperatures are tested.The optimized annealing condition is 160℃for 10 min in a nitrogen atmosphere.The device shows that the open circuit voltage V-(OC) achieves about 0.65V and the power conversion efficiency is as high as 4.0%around the second interference peak.  相似文献   

7.
In this paper, we present the effect of varied illumination levels on the electrical properties of the organic blend bulk heterojuction (BHJ) photodiode. To prepare the BHJ blend, poly(2-methoxy-5(2P-ethylhexyloxy) phenyleneviny- lene (MEH-PPV) and aluminum-tris-(8-hydroxyquinoline) (Alq3) are used as donor and acceptor materials, respectively. In order to fabricate the photodiode, a 40-nm thick film of poly(3, 4-ethylendioxytbiophene):poly(styrensulfonate) (PE- DOT:PSS) is primarily deposited on a cleaned ITO coated glass substrate by spin coating technique. The organic photo- sensitive blend is later spun coated on the PEDOT:PSS layer, followed by the lithium fluoride (LiF) and aluminium (A1) thin films deposition by thermal evaporation. The optical properties of the MEH-PPV:Alq3 blend thin films are investigated using photoluminescence (PL) and UV-Vis spectroscopy. The photodiode shows good photo-current response as a function of variable illumination levels. The responsivity value - 8 mA/W at 3 V is found and the ratio of photo-current to dark current (lph/IDark) is found to be 1.24.  相似文献   

8.
A 4H SiC betavoltaic nuclear battery is demonstrated. A Schottky barrier diode is utilized for carrier separation. Under illumination of Ni-63 source with an apparent activity of 4mCi/cm^2, an open circuit voltage of 0.49 V and a short circuit current density of 29.44nA/cm^2 are measured. A power conversion efficiency of 1.2% is obtained. The performance of the device is limited by low shunt resistance, backscattering and attenuation of electron energy in air and Schottky electrode. It is expected to be significantly improved by optimizing the design and processing technology of the device.  相似文献   

9.
A dc magnetic sputtering process is applied to growth of a Mo back. contact layer onto the flexible polyimide (PI) and rigid soda-lime glass (SLC) substrates. The structural and electrical properties of the Mo layer coated on the two kinds of substrates are investigated by x-ray diffraction (XRD) and Hall effect measurements. The results show that the Mo layer on SLG indicate more better crystal quality and lower resistivity than that on the PI sheets. In contrast to the SLG substrate, the resistivity of the Mo layer on PI is increased by the vacuum annealing process at the substrate temperature of 450℃ under Se atmosphere, which is attributed to the cracked Mo layer induced by the mismatch of the coefficient of thermal expansion between PI and Mo material. The Cu(In,Ga)Se2 (CIGS) solar cells based on the PI and SLO substrates show the best conversion efficiencies of 8.16% and 10.98% (active area, 0.2cm^2), respectively. The cell efficiency of flexible CIGS solar cells on PI is limited by its relatively lower fill factor caused by the Mo back contact.  相似文献   

10.
A prefabricated conductive polymer film of polymer poly(3,4-ethylenedioxy-thiophene):poly (styrene-sulfonate) (PEDOT:PSS) is developed and is used as the anode in an inverted polymer solar cell (PSC) through a lamination process. The geometry structure of the PSC is indium tin oxide/interface layer/P3HT:PCBM/PEDOT:PSS. The PEDOT:PSS electrode is 5 μm and the sheet resistance is 10Ω/sq. The device fabrication process is vacuum-free and extremely simple. Lithium carbonate (Li2CO3) and cesium carbonate (Cs2C03) are used as the cathode interface layers, respectively, and the result shows that Li2CO3 can enhance the open-circuit voltage (Voc) and fill factor distinctly, and the power conversion efficiency (PCE) can reach 2.1%.  相似文献   

11.
於黄忠  温源鑫 《物理学报》2011,60(3):38401-038401
以MEH-PPV(poly(2-methoxy-5-(2'-ethylhexoxy)-1,4-phenylene vinylene))为电子给体材料, PCBM(1-(3-methoxycarbonyl)-propyl-1-1-phenyl-(6,6)C61)为电子受体材料, 制成了共混体系太阳电池.研究了不同厚度活性层对太阳电池性能的影响.结果表明, 活性层厚度为100 nm时,太阳电池具有最佳性能.活性层厚度的增加,增大了光生电荷的复合,减少了太阳电池的填充因子,从而减少了太阳电 关键词: 太阳电池 厚度 电极 性能  相似文献   

12.
制备了四种不同结构的有机太阳能电池器件,器件1 ITO/LiF/PEDOT∶PSS/MEH-PPV/C60/Al、器件2 ITO/PEDOT∶PSS/MEH-PPV/C60/Al、器件3 ITO/LiF/PEDOT∶PSS/MEH-PPV∶C60/C60/Al和器件4 ITO/PEDOT∶PSS/MEH-PPV∶C60/C60/Al。测量了它们的电流-电压特性,结果显示在ITO和PEDOT∶PSS之间插入一薄层LiF使得器件性能得到较大提高。其器件1的JSC和FF比器件2的提高了74%和31%; 器件3的JSC比器件4的提高了约40%。这主要是由于LiF层有效地抑制了空穴向阳极的传输,并且LiF层在ITO和PEDOT:PSS之间形成了良好的界面特性。因此,这种结构上的改进有效地提高了有机太阳能电池的性能。  相似文献   

13.
Various compositional photovoltaic cells based on the blend of poly(3-hexylthiophene) (P3HT) as donors and TiO2 nanocrystals as acceptors are fabricated and investigated. It is demonstrated that the blend ratio of P3HT and TiO2 nanocrystals could greatly influence the performance of the photovoltaic cells. The maximum of 0.411% in power conversion efficiency under AM 1.5, 100mW/cm2, and 44.4% of fill factor are obtained in the solar cell with the blend weight ratio 1:1 of P3HT and TiO2 nanocrystals. The function of nanocrystal composition is discussed in terms of the results of photoluminescence spectroscopy, atomic force microscopy, transmission electron microscopy, and charge transport I-V curve.  相似文献   

14.
以MEH-PPV(poly(2-methoxy-5-(2′-ethylhexoxy)-1,4-phenylene vinylene)为电子给体材料(Donor,D), TiO2纳米线为电子受体材料(Acceptor,A),制成了共混体系太阳电池. 从D/A材料共混体系的紫外可见吸收光谱(UV-vis)、光荧光谱(PL)、器件的电荷传输的光导J-V图等方面,分析了MEH-PPV∶TiO2体系器件性能变化的原因. 得出了当在纯MEH-PP 关键词: 太阳电池 聚合物 性能  相似文献   

15.
In this work,the influence of a small-molecule material,tris(8-hydroxyquinoline) aluminum (Alq 3),on bulk het-erojunction (BHJ) polymer solar cells (PSCs) is investigated in devices based on the blend of poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and [6,6]-phenyl-C 61-butyric acid methyl ester (PCBM).By dop-ing Alq 3 into MEH-PPV:PCBM solution,the number of MEH-PPV excitons can be effectively increased due to the energy transfer from Alq 3 to MEH-PPV,which probably induces the increase of photocurrent generated by excitons dissociation.However,the low carrier mobility of Alq 3 is detrimental to the efficient charge transport,thereby blocking the charge collection by the respective electrodes.The balance between photon absorption and charge transport in the active layer plays a key role in the performance of PSCs.For the case of 5 wt.% Alq 3 doping,the device performance is deteriorated rather than improved as compared with that of the undoped device.On the other hand,we adopt Alq 3 as a buffer layer instead of commonly used LiF.All the photovoltaic parameters are improved,yielding an 80% increase in power conversion efficiency (PCE) at the optimum thickness (1 nm) as compared with that of the device without any buffer layer.Even for the 5 wt.% Alq 3 doped device,the PCE has a slight enhancement compared with that of the standard device after modification with 1 nm (or 2 nm) thermally evaporated Alq 3.The performance deterioration of Alq 3-doped devices can be explained by the low solubility of Alq 3,which probably deteriorates the bicontinuous D-A network morphology;while the performance improvement of the devices with Alq 3 as a buffer layer is attributed to the increased light harvesting,as well as blocking the hole leakage from MEH-PPV to the aluminum (Al) electrode due to the lower highest occupied molecular orbital (HOMO) level of Alq 3 compared with that of MEH-PPV.  相似文献   

16.
We fabricate the organic photovoltaic (PV) devices, in which 4,4',4"-tris-(2-methylphenylphenylamino)triphenylamine (m-MTDATA) and rare earth (RE) (dibenzoylmethanato)a(bathohenanthroline) (RE(DBM)abath) (RE = Nd or Pr) are used as electron donor and acceptor, and investigate their PV properties. The PV diode fabricated in the optimum processing conditions shows the open-circuit voltage of 1.91 V, short-circuit current of 0.1 mA/cm^2, fill factor of 0.38, and the overall power conversion efficiency of 1.9% when it is irradiated under UV light (4 m W/cm^2). The photocurrent density exhibits an increase of 20% at least when a very thin LiF layer is inserted between the RE-complexes and the A1 cathode. A strong electroluminescence from the interface is also observed and the maximum luminance of a yellow emission resulted from the exciplex is 580 cd/m^2 at 17 V bias.  相似文献   

17.
赵理  刘东洋  刘东梅  陈平  赵毅  刘式墉 《物理学报》2012,61(8):88802-088802
通过采用4,4′,4″-三(N-3-甲基苯基-N-苯基氨基)三苯胺 (m-MTDATA)掺入MoOx作为器件的空穴传输层来提高酞菁铜(CuPc)/C60小分子 有机太阳电池的效率. 采用真空蒸镀的方法制备了一系列器件, 其中结构为铟锡氧化物 (ITO)/m-MTDATA:MoOx(3:1)(30 nm)/CuPc(20 nm)/C60(40 nm)/4,7-二苯 基-1,10-菲罗啉 (Bphen)(8 nm)/LiF(0.8 nm)/Al(100 nm)的器件, 在AM1.5 (100 mW/cm2)模拟太阳光的照射条件下, 开路电压Voc=0.40 V, 短路电流Jsc=6.59 mA/cm2, 填充因子为0.55, 光电转换效率达1.46%, 比没有空穴传输层的器件ITO/CuPc(20 nm)/C60(40 nm)/Bphen(8 nm)/LiF(0.8 nm)/Al(100 nm) 光电转换效率提高了38%. 研究表明, 加入m-MTDATA:MoOx(3:1)(30 nm)空穴传输层减小了有机层和ITO电极之间的接触电阻, 从而减小了整个器件的串联电阻, 提高了器件的光电转换效率.  相似文献   

18.
In this work, bathocuproine (BCP) and bathophenanthroline (Bphen), commonly used in small-molecule organic solar cells (OSCs), are adopted as the buffer layers to improve the performance of the polymer solar cells (PSCs) based on poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV): [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction. By inserting BCP or Bphen between the active layer and the top cathode, all the performance parameters are dramatically improved. The power conversion efficiency is increased by about 70% and 120% with 5-nm BCP and 12-nm Bphen layers, respectively, when compared with that of the devices without any buffer layer. The performance enhancement is attributed to BCP or Bphen (i) increasing the optical field, and hence the absorption in the active layer, (ii) effectively blocking the excitons generated in MEH-PPV from quenching at organic/aluminum (Al) interface due to the large band-gap of BCP or Bphen, which results in a significant reduction in series resistance (Rs), and (iii) preventing damage to the active layer during the metal deposition. Compared with the traditional device using LiF as the buffer layer, the BCP-based devices show a comparable efficiency, while the Bphen-based devices show a much larger efficiency. This is due to the higher electron mobility in Bphen than that in BCP, which facilitates the electron transport and extraction through the buffer layer to the cathode.  相似文献   

19.
ZnO is introduced as an alternative to TiO2 in dye sensitized solar cells (DSSCs) due to its band gap similar to TiO2, higher electron mobility, and flexible procedures of preparations. Several samples of ZnO films are prepared with the hydrothermal synthesis method and the sol-gel technique, respectively. These ZnO films were assembled as photoanodes in DSSCs using N3 dye as the sensitizer. The ZnO-based cells prepared by the hydrothermal synthesis show typical current source characteristics, whose fill factor (FF) is 0.44 and photo-to-electric power conversion efficiency is 0.34%. On the other hand, all the samples prepared with the sol-gel technique show accompanied source characteristics with relatively higher power conversion efficiencies (1%) but a lower FF (0.26). X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements indicate that the sol-gel samples have small particles sizes. Therefore, sol-gel samples could adsorb more dye molecules to generate high conversion efficiencies. At the same time, more grain boundaries make it more possible for injected electrons to recombine with the oxidized electrolyte. Hydrothermal samples have bigger grains, so they show poor conversion efficiency and relatively high FF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号