首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
With use of electron-assisted chemical vapour deposition (EACVD) technology, nanocrystalline diamond films are successfully deposited on an α-SiC single phase ceramics substrate by means of reduction of the reactive gas pressure. The structure and surface morphology of the deposited films are characterized by Raman spectroscopy, x-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The results examined by FE-SEM and AFM show that when the gas pressure was reduced to 0.5- 1 kPa, the surface grain size and surface roughness of the diamond film are decreased greatly to 18-32nm and 34-58nm respectively. The grain sizes estimated from full with at half maximum of (111) XRD peak by the Scherrer formula are 6-28 nm. However, too high secondary nucleation rate may result in pores and defects in the deposited films. Only at suitable gas pressure (1 kPa) to deposit films can we obtain densification and better quality nanocrystalline films.  相似文献   

2.
Zirconium(Zr) thin films deposited on Si(100) by pulsed laser deposition(PLD) at different pulse repetition rates are investigated. The deposited Zr films exhibit a polycrystalline structure, and the X-ray diffraction(XRD) patterns of the films show the α Zr phase. Due to the morphology variation of the target and the laser–plasma interaction, the deposition rate significantly decreases from 0.0431 /pulse at 2 Hz to 0.0189 /pulse at 20 Hz. The presence of droplets on the surface of the deposited film, which is one of the main disadvantages of the PLD, is observed at various pulse repetition rates. Statistical results show that the dimension and the density of the droplets increase with an increasing pulse repetition rate. We find that the source of droplets is the liquid layer formed under the target surface. The dense nanoparticles covered on the film surface are observed through atomic force microscopy(AFM). The root mean square(RMS) roughness caused by valleys and islands on the film surface initially increases and then decreases with the increasing pulse repetition rate.The results of our investigation will be useful to optimize the synthesis conditions of the Zr films.  相似文献   

3.
Polycrystalline 3C-SiC films are deposited on SiO2 coated Si substrates by low pressure chemical vapour deposition (LPCVD) with C3H8 and SiH4 as precursors. Controlled nitrogen doping is performed by adding NH3 during SiC growth to obtain the low resistivity 3C-SiC films. X-ray diffraction (XRD) patterns indicate that the deposited films are highly textured (111) orientation. The surface morphology and roughness are determined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface features are spherulitic texture with average grain size of 100nm, and the rms roughness is 20nm (AFM 5×5 μm images). Polycrystalline 3C-SiC films with highly orientational texture and good surface morphology deposited on SiO2 coated Si substrates could be used to fabricate rf microelectromechanical systems (MEMS) devices such as SiC based filters.  相似文献   

4.
Nonpolar (1120) a-plane GaN films are grown by metal-organic chemical vapour deposition (MOCVD) on r-plane (1102) sapphire.The samples are irradiated with neutrons under a dose of 1 × 10 15 cm 2.The surface morphology,the crystal defects and the optical properties of the samples before and after irradiation are analysed using atomic force microscopy (AFM),high resolution X-ray diffraction (HRXRD) and photoluminescence (PL).The AFM result shows deteriorated sample surface after the irradiation.Careful fitting of the XRD rocking curve is carried out to obtain the Lorentzian weight fraction.Broadening due to Lorentzian type is more obvious in the as-grown sample compared with that of the irradiated sample,indicating that more point defects appear in the irradiated sample.The variations of line width and intensity of the PL band edge emission peak are consistent with the XRD results.The activation energy decreases from 82.5 meV to 29.9 meV after irradiation by neutron.  相似文献   

5.
A simulation of the growth of an obliquely deposited thin film in a three-dimensional lattice was made using kinetic Monte Carlo method. Cu growth in three dimensions on a (001) substrate with high deposition rates has been simulated in this model. We mainly investigated the variation of three-dimensional morphology and microstructure offilms with incidence angle of sputtered flux. The relation of roughness and densities of films with incidence angle was also investigated. The simulation results show that the surface roughness increases and the relative density of thin film decreases with increasing incidence angle, respectively; the columnar structures were separated by void regions for large incidence angle and high deposition rate. The simulation results are in good agreement with experimental results.However, the orientation angle of columns is not completely consistent with the classical tangent rule.  相似文献   

6.
SiOx (x = 0- 2) films were deposited on BK-7 substrates by a low frequency reactive magnetron sputtering system with the oxygen flow rate (OFR) changing from 0 to 30 sccm. The samples were characterized by atomic force microscopy, spectrophotometer, and X-ray photoelectron spectroscopy. The extinction coefficient and refractive index decrease, while the optical transmittance increases with the increase of OFR from 0 to 17 sccm. The root mean square surface roughness has a maximum at 10 sccm OFR. The highest deposition rate is at 15 sccm OFR. Our results show that the films deposited at 20 sccm OFR are stoichiometric silica with relatively high deposition rate, low extinction coefficient, and low surface roughness. Therefore, a precise control of OFR is very important to obtain high quality films for optical applications.  相似文献   

7.
SiO_2-TiO_2 sol-gel films are deposited on SiO_2/Si by dip-coating technique.The SiO_2-TiO_2 strips are fabricated by laser direct writing using an ytterbium fiber laser and followed by chemical etching.Surface structures,morphologies and roughness of the films and strips are characterized.The experimental results demonstrate that the SiO_2-TiO_2 sol-gel film is loose in structure and a shrinkage concave groove forms if the film is irradiated by laser beam.The surface roughness of both non-irradiated and laser irradiated areas increases with the chemical etching time.But the roughness of laser irradiated area increases more than that of non-irradiated area under the same etching time.After being etched for 28 s,the surface roughness value of the laser irradiated area increases from 0.3 nm to 3.1 nm.  相似文献   

8.
Diamond-like carbon (DLC) films have been deposited using three different techniques: (a) electron cyclotron resonance---plasma source ion implantation, (b) low-pressure dielectric barrier discharge, (c) filtered---pulsed cathodic arc discharge. The surface and mechanical properties of these films are compared using atomic force microscope-based tests. The experimental results show that hydrogenated DLC films are covered with soft surface layers enriched with hydrogen and sp$^{3}$ hybridized carbon while the soft surface layers of tetrahedral amorphous carbon (ta-C) films have graphite-like structure. The formation of soft surface layers can be associated with the surface diffusion and growth induced by the low-energy deposition process. For typical CVD methods, the atomic hydrogen in the plasmas can contribute to the formation of hydrogen and sp$^{3}$ hybridized carbon enriched surface layers. The high-energy ion implantation causes the rearrangement of atoms beneath the surface layer and leads to an increase in film density. The ta-C films can be deposited using the medium energy carbon ions in the highly-ionized plasma.  相似文献   

9.
The investigation of electrochemical processes on the nanometer scale is of great scientific as well as technological interest. Here we study the electrodeposition of copper on a polycrystalline gold surface, and demonstrate that copper deposition can be locally induced by mechanical activation with the tip of an atomic force microscope (AFM). Whereas at higher values of the deposition voltage (>100mV), a solid copper film can grow on the gold surface without tip activation, at lower voltages (approx. 30-60mV), copper deposition only occurs at the position where the surface is activated by the AFM tip due to scanning in mechanical contact with the sample. With this mechano-electrochemical "writing" process, which can be performed at ambient conditions, the controlled local deposition of metallic islands is possible, at applied force loads of the order of 10nN. Both the size-dependence of the locally induced structures on the deposition time and the reversibility of the local deposition process are studied. Depending on the deposition parameters, individual copper islands between 50nm and 200nm in size were deposited at predefined locations on the gold surface. The investigations open perspectives for the controlled mechano-electrochemical writing of more complex nanostructures with the AFM tip.  相似文献   

10.
ZrO2 thin films were prepared in electron beam thermal evaporation method. And the deposition rate changed from 1.3 to 6.3 nm/s in our study. X-ray diffractometer and spectrophotometer were employed to characterize the films. X-ray diffraction (XRD) spectra pattern shows that films structure changed from amorphous to polycrystalline with deposition rate increasing. The results indicate that internal stresses of the films are compressive in most case. Thin films deposited in our study are inhomogeneous, and the inhomogeneity is enhanced with the deposition rate increasing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号