首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
The advantages of a GaN-AlGaN-InGaN last quantum barrier (LQB) in an InGaN-based blue light-emitting diode are analyzed via numerical simulation. We found an improved light output power, lower current leakage, higher recombi- nation rate, and less efficiency droop compared with conventional GaN LQBs. These improvements in the electrical and optical characteristics are attributed mainly to the specially designed GaN-AlGaN-InGaN LQB, which enhances electron confinement and improves hole injection efficiency.  相似文献   

2.
GaN-based multiple quantum well light-emitting diodes (LEDs) with conventional and superlattice barriers have been investigated numerically. Simulation results demonstrate using InGaN/GaN superlattices as barriers can effectively enhance performances of the GaN-Based LEDs, mainly owing to the improvement of hole injection and transport among the MQW active region. Meanwhile, the improved electron capture decreases the electron leakage and alleviates the efficiency droop. The weak polarization field induced by the superlattice structure strengthens the intensity of the emission spectrum and leads to a blue-shift relative to the conventional one.  相似文献   

3.
研究了不同垒厚对InGaN/GaN多量子阱电注入发光性能的影响及机理。实验发现,当GaN垒层的厚度从6 nm增大到24 nm时,垒厚的样品发光强度更强,而且当注入电流增加时,适当增加垒厚,可以更显著增加发光强度。进一步结合发光峰位和光谱宽度的研究表明,由于应力和极化效应的存在,当垒层厚度在6~24 nm范围内时,适当增加垒层厚度不仅会使得能带的倾斜加剧,减少电子泄露,而且也会增加InGaN阱层的局域态深度,从而改善量子阱的发光性能。  相似文献   

4.
In this report, we designed a light emitting diode (LED) structure in which an N-polar p-GaN layer is grown on top of Ga-polar In0.1Ga0.9N/GaN quantum wells (QWs) on an n-GaN layer. Numerical simulation reveals that the large polarization field at the polarity inversion interface induces a potential barrier in the conduction band, which can block electron overflow out of the QWs. Compared with a conventional LED structure with an Al0.2Ga0.8N electron blocking layer (EBL), the proposed LED structure shows much lower electron current leakage, higher hole injection, and a significant improvement in the internal quantum efficiency (IQE). These results suggest that the polarization induced barrier (PIB) is more effective than the AlGaN EBL in suppressing electron overflow and improving hole transport in GaN-based LEDs.  相似文献   

5.
In this study, the efficiency droop of an InGaN light-emitting diode (LED) is reduced slgnlncanUy oy using a p-AlGaN/GaN superlattice last quantum barrier. The reduction in efficiency droop is mainly caused by the decrease of electron current leakage and the increase of hole injection efficiency, which is revealed by investigating the light currents, internal quantum efficiencies, energy band diagrams, carrier concentrations, carrier current densities, and radiative recombination efficiencies of three LED structures with the advanced physical model of semiconductor device (APSYS).  相似文献   

6.
In this study,the efficiency droop of an InGaN light-emitting diode(LED)is reduced significantly by using a pAlGaN/GaN superlattice last quantum barrier.The reduction in efficiency droop is mainly caused by the decrease of electron current leakage and the increase of hole injection efficiency,which is revealed by investigating the light currents,internal quantum efficiencies,energy band diagrams,carrier concentrations,carrier current densities,and radiative recombination efficiencies of three LED structures with the advanced physical model of semiconductor device(APSYS).  相似文献   

7.
Parameters-dependent nonlinear absorptions in InGaN/GaN MQW and GaN film   总被引:1,自引:0,他引:1  
The optical nonlinearities of an InGaN/GaN multiple quantum well (MQW) and a GaN film were experimentally investigated by using femtosecond Z-scan method in this paper. It was observed that the InGaN/GaN MQW displays a nonlinear saturable absorption (SA) effect and the nonlinear absorption coefficient β was determined to be ; and the GaN film shows a reverse saturable absorption (RSA) effect and the β is . It is also found that the absorption cross sections and quantum confinement effect (QCE) give an influence on the SA of the InGaN/GaN MQW structure.  相似文献   

8.
<正>In this study,the characteristics of nitride-based light-emitting diodes with different last barrier structures are analysed numerically.The energy band diagrams,electrostatic field near the last quantum barrier,carrier concentration in the quantum well,internal quantum efficiency,and light output power are systematically investigated.The simulation results show that the efficiency droop is markedly improved and the output power is greatly enhanced when the conventional GaN last barrier is replaced by an AlGaN barrier with Al composition graded linearly from 0 to 15% in the growth direction.These improvements are attributed to enhanced efficiencies of electron confinement and hole injection caused by the lower polarization effect at the last-barrier/electron blocking layer interface when the graded Al composition last barrier is used.  相似文献   

9.
Babichev  A. V.  Denisov  D. V.  Lavenus  P.  Jacopin  G.  Tchernycheva  M.  Julien  F. H.  Zhang  H. 《Optics and Spectroscopy》2019,126(2):118-123
Optics and Spectroscopy - The results of the fabrication of technological regimes of formation and the study of the optical properties of light emitting diodes (LED) micropyramids based on...  相似文献   

10.
InGaN/GaN multiple-quantum-well (MQW) structure with Si-doped InGaN electron-emitting layer (EEL) was grown by metal–organic chemical vapor deposition and their characteristics were evaluated by photoluminescence (PL) measurements. In a typical structure, a low indium composition and wide potential well was used to be an EEL, and a six-fold MQW was used to be an active layer where the injected carriers recombine. By comparing the PL spectral characteristics of the MQW samples, the PL intensity of MQW with EEL is about 10 times higher than that of typical MQW. Experimental results indicate that the high electron capture rate of the MQW active region can be achieved by employing EEL.  相似文献   

11.
The structural and optical properties of InGaN/GaN multiple quantum wells(MQWs) with different barrier thicknesses are studied by means of high resolution X-ray diffraction(HRXRD), a cross-sectional transmission electron microscope(TEM), and temperature-dependent photoluminescence(PL) measurements. HRXRD and cross-sectional TEM measurements show that the interfaces between wells and barriers are abrupt and the entire MQW region has good periodicity for all three samples. As the barrier thickness is increased, the temperature of the turning point from blueshift to redshift of the S-shaped temperature-dependent PL peak energy increases monotonously, which indicates that the localization potentials due to In-rich clusters is deeper. From the Arrhenius plot of the normalized integrated PL intensity, it is found that there are two kinds of nonradiative recombination processes accounting for the thermal quenching of photoluminescence,and the corresponding activation energy(or the localization potential) increases with the increase of the barrier thickness.The dependence on barrier thickness is attributed to the redistribution of In-rich clusters during the growth of barrier layers,i.e., clusters with lower In contents aggregate into clusters with higher In contents.  相似文献   

12.
Electrical characteristics of In0.05 Ga0.95N/Al0.07Ga0.9aN and In0.05 Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emltting diodes (UV-LEDs) at 400hm wavelength are measured. It is found that for InGaN/AlGaN MQW LEDs, both ideality factor and parallel resistance are similar to those of InGaN/GaN MQW LEDs, while series resistance is two times larger. It is suggested that the Al0.07Ga0.93N barrier layer did not change crystal quality and electrical characteristic of p-n junction either, but brought larger series resistance. As a result, InGaN/AlGaN MQW LEDs suffer more serious thermal dissipation problem although they show higher light output efficiency.  相似文献   

13.
GaN/InGaN superlattice barriers are used in InGaN-based light-emitting diodes (LEDs). The electrostatic field in the quantum wells, electron hole wavefunction overlap, carrier concentration, spontaneous emission spectrum, light-current performance curve, and internal quantum efficiency are numerically investigated using the APSYS simulation software. It is found that the structure with GaN/InGaN superlattice barriers shows improved light output power, and lower current leakage and efficiency droop. According to our numerical simulation and analysis, these improvements in the electrical and optical characteristics are mainly attributed to the alleviation of the electrostatic field in the active region.  相似文献   

14.
Uniform InGaN nanodots were successfully grown on SiO2 pretreated GaN surface. It was found that the InGaN nanodots were 20?nm in diameter and 5?nm in height, approximately. After the growth of two periods of InGaN/GaN quantum wells on the surface of InGaN nanodots, nanodot structure still formed in the InGaN well layer caused by the enhanced phase separation phenomenon. Dual-color emissions with different behavior were observed from photoluminescence (PL) spectrum of InGaN nanodots hybrid with InGaN/GaN quantum wells. A significant blueshift and a linewidth broadening were measured for the low-energy peak as the increase of PL excitation power, while a slight blueshift and a linewidth narrowing occurred for the high-energy peak. Accordingly, these two peaks were assigned to be from the In-rich nanodots and quantized state transition from the InGaN/GaN quantum wells with indium content, respectively.  相似文献   

15.
InGaN量子阱的微观特性   总被引:1,自引:4,他引:1       下载免费PDF全文
林伟  李书平  康俊勇 《发光学报》2007,28(1):99-103
采用VASP程序包模拟计算InGaN量子阱的能带,精细展示了量子阱实空间能带结构。计算结果表明,In原子所在区域出现局域束缚态,导带底与价带顶的简并能级发生分裂,同时量子阱沿垂直结面方向存在分立的能级。此外,针对影响能带的In组分波动、能带弯曲等问题进行探讨,以准确描述其电子行为,从而深入系统地了解InGaN/GaN量子阱的电学光学等特性。  相似文献   

16.
We report on the crystallographic orientation of InGaN layers grown on GaN substrates with a miscut with respect to c ‐planes up to 2.5°. The samples were examined using high‐resolution X‐ray diffraction (HRXRD) and atomic force microscopy (AFM). Because of the large (up to about 2% in this study) lattice mismatch between InGaN and GaN, an additional tilt between the c lattice planes of InGaN and GaN was observed and explained by using the Nagai model [J. Appl. Phys. 45 , 3789 (1974)]. We observed that for part of the samples, this tilt is about 10% smaller compared to the one predicted by the model. The experimental data are important for understanding the microstructure of InGaN layers grown on substrates of non‐perfect morphology. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
MOCVD生长InGaN/GaN MQW紫光LED   总被引:8,自引:7,他引:1  
利用LP-MOCVD系统生长了InGaN/GaN MQW紫光LED外延片,双晶X射线衍射测试获得了2级卫星峰,室温光致发光谱的峰值波长为399.5nm,FWHM为15.5nm,波长均匀性良好。制成的LED管芯,正向电流20mA时,工作电压在4V以下。  相似文献   

18.
The current study investigates GaN-based light-emitting diodes (LEDs) with InGaN/GaN/InGaN multi-layer barrier (MLB). Simulation results show that GaN-based LEDs with MLB have better performance than conventional GaN-based LEDs with only one GaN barrier because of the enhancement in hole injection into the quantum well and decrease in electron leakage current.  相似文献   

19.
The advantages of InGaN based light-emitting diodes with InGaN/GaN multilayer barriers are studied.It is found that the structure with InGaN/GaN multilayer barriers shows improved light output power,lower current leakage,and less efficiency droop over its conventional InGaN/GaN counterparts.Based on the numerical simulation and analysis,these improvements on the electrical and the optical characteristics are mainly attributed to the alleviation of the electrostatic field in the quantum wells(QWs) when the InGaN/GaN multilayer barriers are used.  相似文献   

20.
Cathodoluminescence (CL) from InGaN grown on GaN hexagonal pyramid structures has been investigated. The facet structure can be controlled by the growth temperature and reactor pressure. GaN pyramid structures surrounded with facets were grown at 1020 C at a pressure of 500 Torr by low-pressure metalorganic vapor phase epitaxy (LP-MOVPE). The indium mole fraction in the InGaN film depends on the facet structure. The thickness of the InGaN and the peak wavelength and intensity of the CL from the InGaN gradually increased from the bottom to the top of the facets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号