首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The photoluminescence properties and energy transfer of a new Ce3+/pr3+/Eu3+ co-doped solid-solution composi- tion of Sr2.975-xLaxAlO4+xF1-x (LSAF) phosphor are investigated. Upon doping Pr3+ into lattices of LSAF:Ce host, a shoulder emission peak is observed at about 620 nm, owing to the transition of 1D2 →3H4. Addition of Eu3+ to LSAF:Ce3+, Pr3+ phosphor results in a sharp emission peaked at 675 nm for the 5D0 →TF3 transition and an increase of the intensity of red emission for Pr3+ with increasing Eu3+ concentration. The pathways of energy transfer among Ce3+, Pr3+, and Eu3+ are proposed to be responsible for color addition of a red component to the primary yellow emission, enabling a potential adjustable color for blue excitable warm white.  相似文献   

2.
The photoluminescence properties and energy transfer of a new Ce3+/ Pr3+/ Eu3+co-doped solid-solution composition of Sr2.975-xLaxAlO4+xF1-x(LSAF) phosphor are investigated. Upon doping Pr3+into lattices of LSAF:Ce host,a shoulder emission peak is observed at about 620 nm, owing to the transition of1D2→3H4. Addition of Eu3+to LSAF:Ce3+, Pr3+phosphor results in a sharp emission peaked at 675 nm for the5D0→7F3transition and an increase of the intensity of red emission for Pr3+with increasing Eu3+concentration. The pathways of energy transfer among Ce3+, Pr3+, and Eu3+are proposed to be responsible for color addition of a red component to the primary yellow emission,enabling a potential adjustable color for blue excitable warm white.  相似文献   

3.
Ce3+/Eu2+ codoped LiSrBO3 phosphor is synthesized, and its luminescent characteristics are investigated. LiSrBO3:Ce3+,Eu2+ phosphor exhibits varied hues from blue to white and eventually to yellow by resonance-type energy transfer from Ce3+ ion to Eu2+ ion and tuning the relative proportion of Ce3+/Eu2+ properly. Energy transfer mechanism in LiSrBOa:Ce3+, Eu2+ phosphor is dominated by the dipole-dipole interaction, and the critical distance of the energy transfer is estimated to be about 2 nm by both spectral overlap and concentration quenching methods. Under UV radiation, white light is generated by coupling 436 and 565nm emission bands attributed to Ce3+ and Eu2+ radiations, respectively.  相似文献   

4.
A yellow phosphor, Ca2BO3 Cl:Eu2+ , is prepared by the high-temperature solid-state method. Under the condition of excitation sources ranging from ultraviolet to visible light, efficient yellow emission can be observed. The emission spectrum shows an asymmetrical single intensive band centred at 573 nm, which corresponds to the 4f 6 5d 1 →4f 7 transition of Eu2+ . Eu2+ ions occupy two types of Ca2+ sites in the Ca2BO3 Cl lattice and form two corresponding emission centres, respectively, which lead to the asymmetrical emission of Eu2+ in Ca2 BO 3 Cl. The emission intensity of Eu2+ in Ca2BO3 Cl is influenced by the Eu2+ doping concentration. Concentration quenching is discovered, and its mechanism is verified to be a dipole–dipole interaction. The value of the critical transfer distance is calculated to be 2.166 nm, which is in good agreement with the 2.120 nm value derived from the experimental data.  相似文献   

5.
Optical absorption,excitation,and fluorescence were investigated in Eu ion-doped CdWO4 single crystal grown by a modified Bridgman method.The results indicate that Eu2+ and Eu3+ ions coexist in CdWO4 crystal and an energy transfer occurs between these Eu2+ and Eu3+ ions.When the crystal is excited by 266-nm light,the energy corresponding to the 4f65d to 8S7/2 transition of Eu2+ ions results in the excitation of the Eu3+ ions to the 5DJ level.The effect on fluorescence of annealing in oxygen at various temperatures was investigated.The excitation intensity of Eu2+ ions at 266 nm decreases as annealing temperature increases from 300 K to 1073 K,but it remains at a certain equilibrium level when the annealing temperature is further increased.  相似文献   

6.
The SrZnP2OT:Eu^2+, Mn^2+ phosphor is synthesized by high temperature solid state reaction. The luminescence properties and the energy transfer between Eu^2+ and Mn^2+ are investigated. The emission bands of this phosphor peaked at 42Ohm and 67Ohm are originated from the 5d → 4f transition of Eu^2+ and from the 4T1 (4G) --〉 6A1 (6S) transit/on of Mn^2+, respectively. With the increasing Mn^2+ concentration, the intensity of fixed concentra- tion Eu^2+ decreases and the intensity of Mn^2+ also increases. It is suggested that there is an energy transfer from Eu^2+ to Mn^2+ in SrZnP2O7 host. According to Dexter's energy transfer formula of multipolar interaction, the energy transfer between Eu^2+ and Mn^2+ is due to the electric dipole-quadrupole interaction of the resonance transfer.  相似文献   

7.
A blue emitting phosphor Sr3Bi(PO4)3:Eu2+ is synthesized luminescent property is investigated. Sr3Bi(PO4 )3 :Eu^2+ can by a high-temperature solid state method, and its create blue emission under the 332 radiation excitation, and the prominent luminescence in blue (423nm) due to the 4fSd^1→4f^7 transition of the Eu^2+ ion. The crystallographic sites of the Eu^2+ ion in Sr3Bi(PO4)3 are analyzed, and the 420 and 440 nm emission peaks of the Eu^2+ ion are assigned to the nine-coordination and eight-coordination, respectively. The emission intensity of Sr3Bi(PO4)3:Eu^2+ is influenced by the Eu^2+ doping content, and the concentration quenching effect is observed. The quenching mechanism is the dipole-dipole interaction, and the critical distance of energy transfer is calculated by the concentration quenching method to be approximately 1.72nm.  相似文献   

8.
李盼来  徐征  赵谡玲  王永生  张福俊 《中国物理 B》2012,21(4):47803-047803
A yellow phosphor, Ca2BO3CI:Eu2+, is prepared by the high-temperature solid-state method. Under the condition of excitation sources ranging from ultraviolet to visible light, efficient yellow emission can be observed. The emission spectrum shows an asymmetrical single intensive band centred at 573 nm, which corresponds to the 4f65dl→4f7 transition of Eu2+. Eu2+ ions occupy two types of Ca2+ sites in the Ca2BO3C1 lattice and form two corresponding emission centres, respectively, which lead to the asymmetrical emission of Eu2+ in Ca2BO3C1. The emission intensity of Eu2+ in Ca2BO3C1 is influenced by the Eu2+ doping concentration. Concentration quenching is discovered, and its mechanism is verified to be a dipole-dipole interaction. The value of the critical transfer distance is calculated to be 2.166 nm, which is in good agreement with the 2.120 nm value derived from the experimental data.  相似文献   

9.
韦先涛  赵江波  陈永虎  尹民  李勇 《中国物理 B》2010,19(7):77804-077804
Bi~(3+) and Yb~(3+) codoped cubic Y2O3 phosphors are prepared by pechini sol-gel method.Strong near-infrared (NIR) emission around 980 nm from Yb~(3+)(2F5/2 → 2F7/2) is observed under ultraviolet light excitation.A broad excitation band ranging from 320 to 360 nm,owing to the 6s 2 →6s6p transition of Bi~(3+) ions,is recorded when the Yb~(3+) emission is monitored,which suggests a very efficient energy transfer from Bi~(3+) ions to Yb~(3+) ions.The Yb~(3+) concentration dependences of both the Bi~(3+) and the Yb~(3+) emissions are investigated.The decay curve of Bi ~(3+) emission under the excitation of 355 nm pulse laser is used to explore the Bi~(3+) →Yb~(3+) energy transfer process.Cooperative energy transfer (CET) is discussed as a possible mechanism for the near-infrared emission.  相似文献   

10.
A novel red-emitting phosphor, CaYAl3O7 : Eu 3+ , Sm3+ , is synthesized by a combustion method at a low temperature (850℃), and the single phase of CaYAl3O7 is confirmed by powder X-ray diffraction measurements. The photoluminescence property results reveal that the red emission intensity of Eu3+ is strongly dependent on the Sm3+ concentration. Only the Eu 3+ luminescence is detected in the Eu 3+ -Sm3+ co-doped CaYAl3O7 phosphor with 393 nm excitation. However, under the characteristic excitation (402 nm) of Sm3+ , not only the Sm3+ emission but also the Eu 3+ emission are observed. A possible mechanism of the energy transfer between Sm3+ and Eu 3+ is investigated in detail.  相似文献   

11.
We report the photoluminescence(PL) of Eu^3+-doped glass with Bi^3+as a sensitizer. The specific glass system with the strong enhancement of the red emission of Eu3+is obtained by adding a small number of Bi3+ions instead of increasing the Eu^3+ concentration. The emission band of Bi3+overlaps with the excitation band of Eu^3+ and the lifetime decay curves,resulting in a very efficient energy transfer from Bi^3+ to Eu^3+. The probability of energy transfer is strongly dependent on Bi^3+ concentration. In addition, the intensity of 4f–4f transition is much stronger than that of a charge-transfer(CT) band in the excitation spectrum, which indicates that the Na2O–Ca O–Ge O2-Si O2 glass is a suitable red-emitting phosphor with high stability as a candidate for light-emitting diodes(LEDs).  相似文献   

12.
SnO2 nanocrystal and rare-earth Eu~(3+) ion co-doped SiO2 thin films are prepared by sol-gel and spin coating methods.The formation of tetragonal rutile structure SnO2 nanocrystals with a uniform distribution is confirmed by X-ray diffraction and transmission electron microscopy.Fourier transform infrared spectroscopy is used to investigate the densities of the hydroxyl groups,and it is found that the emission intensity from the 5 D 0 7 F 2 transitions of the Eu~(3+) ions is enhanced by two orders of magnitude due to energy transfer from the oxygen-vacancy-related defects of the SnO2 nanocrystals to nearby Eu~(3+) ions.The influences of the amounts of Sn and the post-annealing temperatures are systematically evaluated to further understand the mechanism of energy transfer.The luminescence intensity ratio of Eu~(3+) ions from electric dipole transition and magnetic dipole transition indicate the different probable locations of Eu~(3+) ions in the sol-gel thin film,which are further discussed based on temperature-dependent photoluminescence measurements.  相似文献   

13.
GAP:Eu,Re(Gd1-x-yAlO3Eux,REy?A,RE=Pr or Ce) powders were prepared by a nitrate-citrate process. It is found that luminescent intensity decreases when GAP:Eu is co-doped with Pr or Ce. The phenomena of spectra prove that there is a resonant energy transfer between Eu and Pr, by the absorption and emission of lower-energy phonon, and also Ce sensitizer decreases the activator energy level from host→Eu. The two factors are considered to be the main reasons for decrease of the luminescent intensity for the co-doped GAP:Eu,Re.  相似文献   

14.
ZnS:Cu, Eu nanocrystals with an average diameter of ~ 80 nm are synthesized using a hydrothermal approach at 200 C. The photoluminescence (PL) properties of the ZnS:Cu, Eu nanocrystals before and after annealing, as well as the doping form of Eu, are studied. The as-synthesized samples are characterized by X-ray diffraction, scanning electron microscopy, inductively coupled plasma-atomic emission spectrometry, and the excitation and emission spectra (PL). The results show that both Cu and Eu are indeed incorporated into the ZnS matrix. Compared with the PL spectrum of the Cu mono-doped sample, the PL emission intensity of the Cu and Eu-codoped sample increases and a peak appears at 516 nm, indicating that Eu 3+ ions, which act as an impurity compensator and activator, are incorporated into the ZnS matrix, forming a donor level. Compared with the unannealed sample, the annealed one has an increased PL emission intensity and the peak position has a blue shift of 56 nm from 516 nm to 460 nm, which means that Eu 3+ ions reduce to Eu 2+ ions, thereby leading to the appearance of Eu 2+ characteristic emission and generating effective host-to-Eu 2+ energy transfer. The results indicate the potential applications of ZnS:Cu, Eu nanoparticles in optoelectronic devices.  相似文献   

15.
The absorption and emission spectra of the YVO4 single crystal co-doped with 1 at.% Nd^3+ and 1 at.% Yb^3+ are investigated. The efficient Nd^3+ → Yb^3+ energy transfer and the back transfer (Yb^3+ → Nd^3+) are observed at room temperature. The fluorescence lifetime of the 4F3/2 level of Nd^3+ in Nd,Yb:YVO4 is measured under 808 nm laser light excitation. The efficiency of Nd^3+ → Yb^3+ energy transfer in YVO4 is determined to be about 34%.  相似文献   

16.
We synthesize Tm3+/Tb3+/Eu3+triply-doped ZrF4–BaF2–LaF3–AlF3–NaF(ZBLAN) transparent glass by using a melt-quenching method. Under excitation of 365 nm, the white emission with Commission internationale deL’Eclairage(CIE) coordinates of(0.33, 0.33) is achieved at the Eu3+concentration of 1.1 mol%. The mechanisms for white emission and the energy transfer process of Tb3+→ Eu3+are discussed in terms of the photoluminescence, photoluminescence excitation spectra, and the light emission decay curves. The nature for the Tb3+→ Eu3+energy transfer is described with the aid of an energy level diagram.  相似文献   

17.
YAG-Ce,Nd,and Yb phosphors with a triple-doped system are prepared by conventional solid-state reaction method.The fluorescence emission and excitation spectra are measured and analyzed.The influences of Yb3+ doping concentration on the emission of Yb3+ and Nd3+ in YAG-Ce,Nd,and Yb are studied.The fluorescence decay spectra,lifetime,and energy transfer efficiency of Ce3+ in different host materials of YAG-Ce and Yb,and YAG-Ce,Nd,and Yb are also compared.Furthermore,the trends of fluorescence decay spectra and the lifetimes of Nd3+ and Yb 3+ in YAG-Ce,Nd,and Yb with the increase of Yb3+ concentration are discussed.Results indicate that YAG-Ce,Nd,and Yb are good candidates for downconverting phosphor,with energy transfer efficiency reaching as high as 82.8%.  相似文献   

18.
Fluoride nanoparticles of Ln3+(Ln3+=Pr3+,Nd3+,Sm3+,Gd3+,Tb3+Dy3+,Ho3+,Er3+,Tm3+,Yb3+)/Eu3+:LaOF and Eu3+ :LaOF with rhombohedral crystal structure were prepared by a hydrothermal-sintering method. The red fluorescence emission of Eu3+ ions was found to be enhanced with most of the co-dopant Ln3+ ions. Compared with strong fluorescence emission at 610 nm of Eu3+ :LaOF nanoparticles, the enhancement factors was up to ten times in Ln3+(Ln3+ =Gd3+,Dy3+,Tm3+)/Eu3+ :LaOF co-doped nanoparticles. The results show that the asymmetry of the local environment of Eu3+ ion was reduced by co-doping Ln3+ ion into the nanoparticles, and that energy transfer might occur between Eu3+ and codopant Ln3+ ions, which is suggested as the source of the observed fluorescence enhancement.  相似文献   

19.
周天亮  宋振  宋西平  边柳  刘泉林 《中国物理 B》2010,19(12):127808-127808
Sr2ScAlO5:Eu2+,a red oxide phosphor with a perovskite-type structure,has been synthesized through a solid-state reaction and its luminescence properties have been investigated.An absorption band centering at 450 nm is observed from the diffuse reflection spectra and the excitation spectra,indicating that the phosphor can match perfectly with the blue light of InGaN light-emitting diodes.A broad red emission band at 620 nm is found from the emission spectra,originating from the 4f 6 5d-4f 7 transition of the Eu 2+ ions.The best doping content of Eu in this material is about 5%.Sr2ScAlO5:Eu2+is a highly promising red phosphor for use in white light-emitting diodes.  相似文献   

20.
LiSrBO3 :Eu3+ phosphor is synthesized by a high solid-state reaction method, and its luminescent characteristics are investigated. The emission and excitation spectra of LiSrBO3:Eu3+ phosphors exhibit that the phosphors can be effectively excited by near ultraviolet (401 nm) and blue (471 nm) light, and emit 615nm red light. The effect of Eua+ concentration on the emission spectrum of LiSrBO3:Eu3+ phosphor is studied; the results show that the emission intensity increases with increasing Eu3+ concentration, and then decreases because of concentration quenching. It reaches the maximum at 3mol%, and the concentration self-quenching mechanism is the dipoledipole interaction according to the Dexter theory. Under the conditions of charge compensation Li+, Na+ or K+ incorporated in LiSrBO3, the luminescent intensities of LiSrBO3 :Eua+ phosphor are enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号