首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The static equation of state (EOS) of tantalum (Ta) is determined by in situ energy-dispersive synchrotron powder x-ray diffraction in a diamond anvil cell (DAC) up to 133GPa. The body-centered-cubic (bcc) phase of Ta is found to be stable over the entire pressure range investigated. The bulk moduli and its first pressure derivative of Ta are constrained by fitting the determined pressure-volume data to Vinet form EOS: B0 =192.65±(3.08)GPa and B'0 =3.58±(0.11). For the sake of avoiding the affect of non-hydrostatic stress, argon is used as a pressure media. A careful checking of the stress state of the sample is presented simultaneously.  相似文献   

2.
To develop high quality dispersion optics in the X-ray region, the sliced multilayer transmission grating is examined. Dynamical diffraction theory is used to calculate the diffraction property of this volume grating. A WSi 2 /Si multilayer with a d-spacing of 14.3 nm and bi-layer number of 300 is deposited on a superpolished silicon substrate by direct current magnetron sputtering technology. To make the transmission grating, the multilayer is sliced and thinned in the cross-section direction to a depth of 23-25 μm. The diffraction efficiency of the grating is measured at E = 8.05 keV, and the 1st-order efficiency is 19%. The sliced multilayer grating with large aspect ratio and nanometer period can be used for high efficiency and high dispersion optics in the X-ray region.  相似文献   

3.
As part of the programme to develop a free-standing thin-film filter for soft x-ray optics applications,stress anisotropy in molybdenum films deposited by dc circular planar magnetron sputtering has been studied by offnormal x-ray diffraction as a function of sputtering argon gas pressure over a range of 0.8-1.5Pa.The stresses are found to be more compressive in the centre area than in the edge area,and more compressive in the tangential direction than in the radial direction.The highest stress anisotropy exists in the film deposited at 1.5Pa gas pressure.Annealing the films in vacuum is effective in reducing both the tensile stress and stress anisotropy in the tensile stressed films.  相似文献   

4.
We study the strength and texture of tantalum(Ta) under uniaxial compression up to 80 GPa using an angledispersive radial x-ray diffraction technique together with the lattice strain theory in a diamond anvil cell at ambient temperature. The ratio of differential stress to shear modulus(t/G) is found to remain constant above~60 GPa, indicating that the Ta starts to experience macro yield with plastic deformation at this pressure.Combined with independent constraints on the high-pressure shear modulus, we find that the Ta sample could support a differential stress of~4.67 GPa when it starts to yield with plastic deformation at~60 GPa under uniaxial compression. The differential stress in Ta ranges from 0.216 GPa to 4.67 GPa with pressure increasing from 1 GPa to 60 GPa and can be expressed as t-0.199(33)十 0.075(1)P, where P is the pressure in GPa. A maximum differential stress as high as~5.37 GPa can be supported by Ta at the high pressure of~80 GPa. In addition, we investigate the texture of Ta under nonhydrostatic compression to 80 GPa using the software package material analysis using diffraction. It is proven that the plastic deformation due to stress under high pressures is responsible for the development of texture.  相似文献   

5.
The evolution of stress in evaporated SiO2, used as optical coatings, is investigated experimentally through in situ stress measurement. A typical evolution pattern consisting of five subprocedures (thin film deposition, stopping deposition, cooling, venting the vacuum chamber, and exposing coated optics to the atmosphere) is put forward. Further investigations into the subprocedures reveal their features. During the deposition stage, the stresses are usually compressive and reach a stable state when the deposited film is thicker than 100 nm. An increment of compressive stress value is observed with the decrease of residual gas pressure or deposition rate. A very low stress of-20 MPa is formed in SiO2 films deposited at 3×10^-2 Pa. After deposition, the stress increases slightly in the compressive direction and is subject to the stabilization in subsequent tens of minutes. In the process of venting and exposure, the compressive component increases rapidly with the admission of room air and then reaches saturation, followed by a logarithmic decrement of the compressive state in the succeeding hours. An initial discussion of these behaviors is given.  相似文献   

6.
Quasihydrostatic limit of LiF as a pressure transmitting medium is investigated by synchrotron radiation x-ray diffraction combined with the diamond anvil cells technique up to 60 GPa at room temperature. The equation-of- state parameters of LiF are determined to be Vo = 65.7(2)A3 Bo = 58(3) GPa and B'0 = 4.9(2) in the silicon oil environment; Vo = 67.4(3) A3, Bo = 51(3) GPa and B'0 = 4.7(2) without pressure transmitting medium. The full width at half maximum of LiF (111) peak increases with the increase of pressure in two independent experiments. The pressure distribution in the sample chamber is estimated by line-scanning x-ray diffraction measurements across the chamber's center, which presents as homogeneous with Pmax - Pmin Of about 1 GPa below 40 GPa.  相似文献   

7.
A micro-manufacturing technology is presented to form three-dimensional metallic micro-structures directly. Micro grid array structures are replicated on a metallic foil surface, with high spatial resolution in micron levels. The numerical simulation results indicate that the material deformation process is characterized by an ultrahigh strain rate. With increasing pulse duration, the sample absorption strain energy increases, and the sample deformation degree enlarges. The stress state of the central point fluctuates between tensile stress and compression stress. The stress state of the angular point is altered from compressive stress to tensile stress due to geometry and loading conditions. The duration length of pulse stress has an effect on the stress state, as with the increase of pulse duration, fluctuation in the stress state decreases. Therefore, laser micro-manufacturing technology will be a potential laser micro forming method which is characterized by low cost and high efficiency.  相似文献   

8.
We propose a new method to evaluate residual stress based on the analysis of a portion of a Debye ring with two-dimensional synchrotron x-ray diffraction.The residual stress of a nickel-based alloy GH3535 evaluated by the proposed method is determined to be-1149 ± 34 MPa based on the quantitative analysis of the deformation of the(200) reflection,and the residual stress obtained by analyzing THE(111) plane is-933 ± 68 MPa.The results demonstrate that the GH3535 alloy surface is highly compressive,as expected for a polishing surface treatment.The proposed method provides insight into the field of residual stress measurement and quantitative understanding of the residual stress states in GH3535.  相似文献   

9.
敬秋民  吴强  柳雷  毕延  张毅  刘盛刚  徐济安 《中国物理 B》2012,21(10):106201-106201
Gold powder is compressed non-hydrostatically up to 127 GPa in a diamond anvil cell(DAC),and its angle dispersive X-ray diffraction patterns are recorded.The compressive strength of gold is investigated in a framework of the lattice strain theory by the line shift analysis.The result shows that the compressive strength of gold increases continuously with the pressure up to 106 GPa and reaches 2.8 GPa at the highest experimental pressure(127 GPa) achieved in our study.This result is in good agreement with our previous experimental result in a relevant pressure range.The compressive strength of gold may be the major source of the error in the equation-of-state measurement in various pressure environments.  相似文献   

10.
Molecular dynamics(MD) simulations are performed to investigate the effects of stress on generalized stacking fault(GSF) energy of three fcc metals(Cu, Al, and Ni). The simulation model is deformed by uniaxial tension or compression in each of [111], [11-2], and [1-10] directions, respectively, before shifting the lattice to calculate the GSF curve. Simulation results show that the values of unstable stacking fault energy(γusf), stable stacking fault energy(γsf), and unstable twin fault energy(γutf) of the three elements can change with the preloaded tensile or compressive stress in different directions.The ratio of γsf/γusf, which is related to the energy barrier for full dislocation nucleation, and the ratio of γutf/γusf, which is related to the energy barrier for twinning formation are plotted each as a function of the preloading stress. The results of this study reveal that the stress state can change the energy barrier of defect nucleation in the crystal lattice, and thereby can play an important role in the deformation mechanism of nanocrystalline material.  相似文献   

11.
赵光普  吕百达 《中国物理 B》2009,18(8):3466-3472
Starting from the Rayleigh--Sommerfeld diffraction integral, this paper studies the spectral behavior in Young's experiment illuminated by nonparaxial partially coherent light and compares with the paraxial case, where the influence of nonparaxiality of partially coherent light on the spectral shifts and spectral switches is stressed. It is shown that there is a spectral shift in the nonparaxial case relative to the paraxial one and the critical position changes, at which the spectral switch occurs. The ratio of the waist width to the central wavelength w00 and relative spatial correlation length \De affect the spectral difference. The smaller w00 is, the larger the difference between the nonparaxial and paraxial results appears. The effect of relative spatial correlation length Δ is relatively small.  相似文献   

12.
罗杰  占文泽  巫伟皇  邵成刚  王典洪 《中国物理 B》2016,25(8):80401-080401
Based on statistical properties, two typical models are considered to calculate the uncertainties for some random noise sequences on the period extraction of a torsion pendulum, which is important and instructive in the measurement of gravitational constant G with the time-of-swing method. An expression of the uncertainty for the period measurement is obtained, which is dependent on the ratio ?t/(1/λ) where ?t is the interval of the sample time and 1/λ is the length of the correlation time. The result of processing experimental data shows that as the interval of the sample time ?t gradually shortens, the uncertainty of the period becomes smaller, and further when the ratio ?t/(1/λ) is less than 1, the uncertainty remains substantially unchanged.  相似文献   

13.
First-principles calculations are used to investigate the mechanical and thermodynamic properties of cubic YH2 at different pressures and temperatures. The generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) method is used to describe the exchange-correlation energy in the present work. The calculated equilibrium lattice constant a and bulk modulus B are in good accordance with the available experimental values. According to the Born-Huang criteria for mechanical stability, elastic constants are calculated from the strain-induced stress method in a pressure range from 0 to 67.1 GPa. Isotropic wave velocities and sound velocities are discussed in detail. It is found that the Debye temperature decreases monotonically with the increase of pressure and that YH2 has low anisotropy in both longitudinal and shear-wave velocities. The calculated elastic anisotropic factors indicate that YH2 has low anisotropy at zero pressure and that its elastic anisotropy increases as pressure increases. Through the quasi-harmonic Debye model, in which phononic effects are considered, the thermodynamic properties of YH2, such as the relations of (V-Vo)/Vo to the temperature and the pressure, the dependences of heat capacity Cv and thermal expansion coefficient a on temperature and pressure ranging from 0 to 2400 K and from 0 to 65 GPa, respectively, are also discussed.  相似文献   

14.
The elastic modulus of Fe72.5Ga27.5 magnetostrictive alloy is determined by testing ac impedance resonance frequency and first-principle calculations. The observed elastic modulus is 90.2 GPa for a directionally solidified sample and 103.4 GPa for a water-quenched sample tested in a dc magnetic field of 32. 7mT without compressive pre-stress. The bulk modulus by first-principles calculation is 179.3GPa which is basically consistent with the experimental result. The elastic modulus first increases and then decreases with increasing dc magnetic field, attributed to magnetostriction occurrence in the Fe72.5Ga27.5 alloy. The elastic modulus increases with increasing compressive pre-stress, resulting from the initial magnetic states change under the applied compressive pre-stress. The elastic modulus increases match well with the improved magnetostriction after quenching.  相似文献   

15.
A novel structure of fiber optic biosensor and its principle are introduced.The sample is detected in microchannels of several microns diameter in fiber optic biosensors.The relation between the optic fiber tapered angle and the fluorescence incident angle is calculated in signal receiving part.As the sensor is a zero-order system,calculating formula of the static sensitivity is derived.When ZnSe nano-crystalline cluster is used for marking the molecules,the static sensitivity for fiber optic biosensors is calculated. At the same time,the relation between the static sensitivity and the ratio of exciting wavelength to fluorescence wavelength is presented.  相似文献   

16.
To resolve the problem of missed evanescent waves in a beam focusing system,a hyperlens-based beam focusing device is proposed in this letter.This device can convert the evanescent waves into propagating waves,and then a super-resolution spot is formed at the center of the hyperlens.The working principle of the device is presented,and the way in which the material and structural parameters of the hyperlens affect the resolution and transmission is analyzed in detail.A multibeam focusing device is optimally designed,and the simulated results verify that a nanoscale spot with a diameter of 15.6 nm(corresponding toλ0/24,whereλ0 is the working wavelength in vacuum)is achieved,which is far less than the diffraction limited resolution with a value of 625 nm(1.7λ0).The device is expected to find numerous applications in optical data storage and nano-photolithography,among others.  相似文献   

17.
刘浩  童华  徐宁 《中国物理 B》2014,(11):61-67
By minimizing a thermodynamic-like potential, we unbiasedly sample the potential energy landscape of soft and frictionless spheres under a constant shear stress. We obtain zero-temperature jammed states under desired shear stresses and investigate their mechanical properties as a function of the shear stress. As a comparison, we also obtain the jammed states from the quasistatic-shear sampling in which the shear stress is not well-controlled. Although the yield stresses determined by both samplings show the same power-law scaling with the compression from the jamming transition point J at zero temperature and shear stress, for finite size systems the quasistatic-shear sampling leads to a lower yield stress and a higher critical volume fraction at point J. The shear modulus of the jammed solids decreases with increasing shear stress. However, the shear modulus does not decay to zero at yielding. This discontinuous change of the shear modulus implies the discontinuous nature of the unjamming transition under nonzero shear stress, which is further verified by the observation of a discontinuous jump in the pressure from the jammed solids to the shear flows. The pressure jump decreases upon decompression and approaches zero at the critical-like point J, in analogy with the well-known phase transitions under an external field. The analysis of the force networks in the jammed solids reveals that the force distribution is more sensitive to the increase of the shear stress near point J. The force network anisotropy increases with increasing shear stress. The weak particle contacts near the average force and under large shear stresses it exhibit an asymmetric angle distribution.  相似文献   

18.
张宝玲  汪俊  侯氢 《中国物理 B》2011,20(3):36105-036105
In this paper,the pressure state of the helium bubble in titanium is simulated by a molecular dynamics(MD) method.First,the possible helium/vacancy ratio is determined according to therelation between the bubble pressure and helium/vacancy ratio;then the dependences of the helium bubble pressure on the bubble radius at different temperatures are studied.It is shown that the product of the bubble pressure and the radius is approximately a constant,a result justifying the pressure-radius relation predicted by thermodynamics-based theory for gas bubble.Furthermore,a state equation of the helium bubble is established based on the MD calculations.Comparison between the results obtained by the state equation and corresponding experimental data shows that the state equation can describe reasonably the state of helium bubble and thus could be used for Monte Carlo simulations of the evolution of helium bubble in metals.  相似文献   

19.
李秋柱  王楷群  菅傲群  刘鑫  张斌珍 《中国物理 B》2010,19(4):47310-047310
This paper discusses the I-V property of the GaAs-based resonant tunnelling structure (RTS) under external uniaxial pressure by photoluminescence studies. Compressive pressure parallel to the [110] direction, whose value is determined by Hooke's law, is imposed on the sample by a helix micrometer. With the increase of the applied external uniaxial compressive pressure, the blue shift and splitting of the luminescence peaks were observed, which have some influence on the I-V curve of RTS from the point of view of the energy gap, and the splitting became more apparent with applied pressure. Full width at half maximum broadening could also be observed.  相似文献   

20.
This paper discusses the Ⅰ-Ⅴ property of the GaAs-based resonant tunnelling structure(RTS) under external uniaxial pressure by photoluminescence studies.Compressive pressure parallel to the [110] direction,whose value is determined by Hooke's law,is imposed on the sample by a helix micrometer.With the increase of the applied external uniaxial compressive pressure,the blue shift and splitting of the luminescence peaks were observed,which have some influence on the I-V curve of RTS from the point of view of the energy gap,and the splitting became more apparent with applied pressure.Full width at half maximum broadening could also be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号