首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用基于密度泛函理论的第一性原理方法,研究了掺杂铁、钴和镍原子的锯齿型磷烯纳米带(ZPNR)的磁电子学特性.研究表明,掺杂和未掺杂ZPNR的结构都是稳定的.当处于非磁态时,未掺杂和掺杂钴原子的ZPNR为半导体,而掺杂铁或者镍原子的ZPNR为金属.自旋极化计算表明,未掺杂和掺杂钴原子的ZPNR无磁性,而掺杂铁或者镍原子的ZPNR有磁性,但只能表现出铁磁性.处于铁磁态时,掺杂铁原子的ZPNR为磁性半导体,而掺杂镍原子的ZPNR为磁性半金属.掺杂铁或者镍原子的ZPNR的磁性主要由杂质原子贡献,产生磁性的原因则是在ZPNR中存在未配对电子.掺杂位置对ZPNR的磁电子学特性有一定的影响.该研究对于发展基于磷烯纳米带的纳米电子器件具有重要意义.  相似文献   

2.
《Physics letters. A》2020,384(25):126486
By using first-principles calculation based on density functional theory and non-equilibrium Green's function method, we investigate the transport properties of zigzag phosphorene nanoribbons (ZPNRs). The edges of the ZPNRs can be passivated in three ways named W1, W2, W3. These calculated results show that the electronic transport properties of the ZPNRs can be seriously influenced by the edge passivation ways, and the transport is determined by both the two edges and the interaction between them. Moreover, we find the width of the ZPNR can switch on or switch off the transport channel of the W3-type ZPNR. Furthermore, we present the transmission spectra, the band structures of both left and right electrodes, the molecular energy levels, and transmission eigenstates of the H-S-passivated W3-type ZPNRs to uncover the transport mechanism. This study provides a theoretical support for designing the related nanodevices by changing the passivation ways, which is an effective route for tuning the electronic structures and the transport properties of the phosphorene nanoribbons.  相似文献   

3.
We have investigated the electronic and magnetic properties of zigzag phosphorene nanoribbons(ZPNRs)with transition metal(TM)passivated atoms,it can be found that the ZPNRs with TM passivated atoms exhibit different magnetisms except for the Ni-passivated system.Meanwhile,the results show that the magnetic moments of ZPNRs with TM passivated atoms are larger than that of ZPNRs with other passivated non-metals/groups.Interestingly,it can be found that Fe-passivated ZPNR exhibits magnetic semiconducting character,which provides the possbility for the application of phosphorene in information storage.For Mn-passivated ZPNRs,it exhibits the half-metallicity.These results may be useful for potential applications of phosphorene in electronic and high-performance spintronic devices.  相似文献   

4.
Van der Waals(vdW)heterobilayers formed by two-dimensional(2D)transition metal dichalcogenides(TMDCs)created a promising platform for various electronic and optical properties,ab initio band results indicate that the band offset of type-Ⅱband alignment in TMDCs vdW heterobilayer could be tuned by introducing Janus WSSe monolayer,instead of an external electric field.On the basis of symmetry analysis,the allowed interlayer hopping channels of TMDCs vdW heterobilayer were determined,and a four-level k·p model was developed to obtain the interlayer hopping.Results indicate that the interlayer coupling strength could be tuned by interlayer electric polarization featured by various band offsets.Moreover,the difference in the formation mechanism of interlayer valley excitons in different TMDCs vdW heterobilayers with various interlayer hopping strength was also clarified.  相似文献   

5.
The systematic investigations of the mechanical, elastic, and electronic properties, and stability of the newly synthesized monoclinic C2/m-Ca_2C_3 are performed, based on the first-principles calculations. Ca_2C_3 is found to be mechanically and dynamically stable only from 0 GPa to 24 GPa. The elastic anisotropy studies show that Ca_2C_3 exhibits the elastic anisotropy increasing with the augment of pressure. Furthermore, using the HSE06 hybrid functional, the electronic properties of Ca_2C_3 under pressure are calculated. The structure can be regarded as a quasi-direct band gap semiconductor, and the pressure-induced direct-indirect band gap transition is studied in detail.  相似文献   

6.
The tight-binding model including spin–orbit coupling is used to study electronic and optical properties of armchair silicene nanoribbons (ASiNRs) in electric fields. Perpendicular electric field monotonically increases band-gap, the DOS, and absorption frequency and strength. It does not change spin-degeneracy, edge-states, and optical selection rule. However, parallel electric field strongly modulates energy dispersions resulting in oscillatory band-gaps, shift in edge-states, and destruction of spin-degeneracy. It induces more transition channels and constructs new selection rules that exhibits richer optical spectra. Modulations of electronic and optical properties of ASiNRs have strong dependence on the direction of electric field and nanoribbon's geometry.  相似文献   

7.
《Physics letters. A》2020,384(6):126127
Using density functional theory (DFT) and the nonequilibrium Green's function method, we explored the electronic structures and transport properties of zigzag phosphorene nanoribbons (ZPNRs) with ordered doping of Si atoms. Our results show that both pristine and Si-doped ZPNRs exhibit metallic properties and the conductance of the doped ZPNRs nanoribbons can be modulated effectively by changing doping positions and concentrations. As different doping positions, different transmission currents can be obtained even with the same doping concentration. Moreover, current amplification factors vary with the doping concentrations. In addition, compared with the pristine system, negative differential resistance effect can also be observed in doped system (Si3), which occurs in lower bias range.  相似文献   

8.
赵龙  芦鹏飞  俞重远  刘玉敏  王东林  叶寒 《中国物理 B》2010,19(5):56104-056104
We perform a first-principles simulation to study the electronic and optical properties of wurtzite Zn1 xCuxO.The simulations are based upon the Perdew-Burke-Ernzerhof form of generalised gradient approximation within the density functional theory.Calculations are carried out in different concentrations.With increasing Cu concentration,the band gap of Zn1 xCuxO decreases due to the shift of valence band.The imaginary part of the dielectric function indicates that the optical transition between O 2p states in the highest valence band and Zn 4s states in the lowest conduction band shifts to the low energy range as the Cu concentration increases.Besides,it is shown that the insertion of Cu atom leads to redshift of the optical absorption edge.Meanwhile,the optical constants of pure ZnO and Zn0.75Cu0.25O,such as loss function,refractive index and reflectivity,are discussed.  相似文献   

9.
The electronic density of states (DOS), band structure and optical properties of orthorhombic SbTaO4 are studied by first principles full potential-linearized augmented plane wave (FP-LAPW) method. The calculation is done in the framework of density functional theory with the exchange and correlation effects treated using generalized gradient approximation (GGA). We find an indirect band gap of 1.9 eV at the R→Γ symmetry direction of the Brillouin zone in SbTaO4. It is observed that there is a strong hybridization between Ta-5d and O-2p electronic states which is responsible for the electronic properties of the system. Using the projected DOS and band structure we have analyzed the interband contribution to the optical properties of SbTaO4. The real and imaginary parts of the dielectric function of SbTaO4 are calculated, which correspond to electronic transitions from the valence band to the conduction band. The band gap obtained is in close agreement with the experimental data.  相似文献   

10.
采用基于密度泛函理论的赝势平面波第一性原理方法,理论研究了不同计量Ta掺入ZnNb2O6材料的光电特性。通过对ZnNb2-xTaxO6(x=0~2.0)材料键结构和态密度的计算,并结合带间电子跃迁分析了材料的介电函数、折射率、反射率以及吸收系数。计算结果显示:(1)ZnNb2-xTaxO6(x=0~2.0)为间接半导体,带隙随着Ta原子的掺入呈下降趋势(x=0,Eg=3.51eV;x=2,Eg=2.916eV),随着Ta掺入量的增加导带顶逐渐移向费米面。态密度主要由O2p、Zn3d、Nb4d、Ta5d轨道组成;(2)ZnNb2-xTaxO6(x=0~2.0)价电子态呈现为非对称,具有很强的局域性,对材料整体的电子结构和键特性有重要的影响;(3)介电函数的计算表明,ZnNb2-xTaxO6(x=0~2.0)材料各向异性,最大吸收峰在3.02×105cm-1附近,消光系数在带边表现出较强的吸收特性,进一步以带结构和态密度为出发点,探讨了电子带间跃迁的光电机理。该结果为研制高性能光电器件用新型功能材料提供了理论依据。  相似文献   

11.
The density of states in the first exciton band of crystalline anthracene has been obtained at room, dry-ice-alcohol, and liquid nitrogen temperatures by applying a thermal modulation technique to observe the hot band-first exciton band optical transition (1-0 transition). The density of states function obtained has been interpreted in terms of the exciton band structure and the Davydov splitting. The K dependent selection rule for the 1-0 transition is discussed. The bandwidth of the first exciton band is 0.09 eV.  相似文献   

12.
段鹤  陈效双  孙立忠  周孝好  陆卫 《物理学报》2005,54(11):5293-5300
基于第一性原理全电子势线性缀加平面波方法(FPLAPW),计算了闪锌矿结构半导体材料ZnTe,CdTe的能带结构.结合闪锌矿对称化合物的有效质量近似理论,对第一性原理的计算结果进行拟合后,得到了ZnTe,CdTe在带隙附近的电子结构.此外还讨论了晶体场分裂能、自旋-轨道相互作用的分裂能和电子、空穴的有效质量及相应的Luttinger参数,结果与实验值相符合. 关键词: FLAPW 电子结构 有效质量  相似文献   

13.
刘检  刘廷禹  李海心  刘凤明 《物理学报》2015,64(19):193101-193101
为了得到准确的In2O3晶体电子结构, 本文分别采用GGA, GGA+U, HSE06的方法计算了电子结构, 并进行了G0W0修正, 通过比较计算结果, 得到HSE06+G0W0方法计算得到的禁带宽带最接近实验结果. 在此基础上使用Hedin的G0W0近似方法和Bethe-Salpeter方程计算得到了In2O3晶体的光学性质, 计算结果与实验结果吻合很好, 在此基础上通过对准粒子能带结构、光学跃迁矩阵和光学吸收谱的分析, 给出了In2O3晶体的光学跃迁机理.  相似文献   

14.
According to first principle simulations, we theoretically predict a type of stable single-layer graphene oxide(C_2O).Using density functional theory(DFT), C_2O is found to be a direct gap semiconductor. In addition, we obtain the absorption spectra of the periodic structure of C_2O, which show optical anisotropy. To study the optical properties of C_2O nanostructures, time-dependent density functional theory(TDDFT) is used. The C_2O nanostructure has a strong absorption near 7 eV when the incident light polarizes along the armchair-edge. Besides, we find that the optical properties can be controlled by the edge configuration and the size of the C_2O nanostructure. With the elongation strain increasing, the range of light absorption becomes wider and there is a red shift of absorption spectrum.  相似文献   

15.
刘雪璐  吴江滨  罗向东  谭平恒 《物理学报》2017,66(14):147801-147801
半导体材料电子能带结构的确定对研究其物理性质及其在半导体器件方面的应用有重要意义.光调制反射光谱是一种无损和高灵敏度的表征半导体材料电子能带结构的光学手段.光调制反射光谱中激光调制导致的材料介电函数的变化在联合态密度奇点附近表现得更为明显.通过测量这些变化,可以得到有关材料能带结构临界点的信息.然而在传统的单调制反射光谱中,激光调制信号的光谱线型拟合和临界点数目的分析往往被瑞利散射和荧光信号所干扰.本文将双调制技术与双通道锁相放大器结合,消除了瑞利信号和荧光信号的干扰,获得了具有较高信噪比的调制反射光谱信号.双通道锁相放大器可以同时解调出反射光谱信号及其经泵浦激光调制后的细微变化量,避免了多次采集时可能存在的系统误差.利用这种技术,在可见激光(2.33 eV)泵浦下,我们测量了半绝缘GaAs体材料从近红外至紫外波段(1.1-6.0 eV)的双调制反射光谱,获得了多个能带结构临界点的信息.探测到了高于泵浦能量之上的与GaAs能带结构高阶临界点对应的特征光谱信号,说明带隙以上高阶临界点的光调制反射光谱本质是光生载流子对内建电场的调制,并不是来自该临界点附近的能带填充效应.这一结果表明双调制反射光谱能够对半导体材料能带结构带隙及其带隙以上临界点进行更准确的表征.  相似文献   

16.
Full potential linear augmented plane wave calculations have been performed to study the electronic and optical properties of In-rich In(x)Al(1-x)N alloys in the hexagonal wurtzite structure. Compositions of x = 0.9375, 0.8125 and 0.6875 are considered which follow from replacing one, three and five In atoms by Al in the 32-atom supercell. The new form of exchange correlation, i.e. Engel-Vosko's generalized gradient approximation within density functional theory, is employed. The calculations yield the band structure and total density of states as well as the imaginary part ε(2)(ω) of the ordinary and extraordinary dielectric function. The calculated dependence of the bandgap on the composition is in good agreement with recent experimental studies. A reversal of the valence band ordering is found between x = 0.8125 and 0.6875. The absorption features in the high-energy range of ε(2)(ω) are related to critical points of the band structure. The transition energies for these van Hove singularities are determined and their bowing parameters are discussed.  相似文献   

17.
Mg掺杂ZnO形成的固溶体Zn1-xMgxO(ZMO)(0 ≤ x ≤ 0.25)是一种带隙较宽、电子学性质可调控的半导体材料,在薄膜太阳电池及光电设备的透明电极等方面具有重要的应用价值。基于密度泛函理论下的第一性原理超软赝势方法,采用GGA+U计算了ZMO的电子结构和光学性质。计算结果表明,随着x值的增加,ZMO的禁带宽度由x=0时的3.32 eV增加到x=0.25时的3.78 eV;光吸收边及反射谱和能量损失谱均发生明显蓝移,峰值存在于紫外光区。计算结果与实验结论相符合。  相似文献   

18.
We examined theoretically band structure and discrete dopant effects in the quantum well infrared photodetector (QWIP) and the quantum dot infrared photodetector (QDIP). We find that in QWIPs discrete dopant effects can induce long wavelength infrared absorption through impurity assisted intra-subband optical transitions. In QDIPs, we find that a strategically placed dopant atom in a quantum dot can easily destroy the symmetry and modify the selection rule. This mechanism could be partially responsible for normal incidence absorption observed in low-aspect-ratio quantum dots.  相似文献   

19.
Strain engineering is a vital way to manipulate the electronic properties of two-dimensional (2D) materials. As a typical representative of transition metal mono-chalcogenides (TMMs), a honeycomb CuSe monolayer features with one-dimensional (1D) moiré patterns owing to the uniaxial strain along one of three equivalent orientations of Cu(111) substrates. Here, by combining low-temperature scanning tunneling microscopy/spectroscopy (STM/S) experiments and density functional theory (DFT) calculations, we systematically investigate the electronic properties of the strained CuSe monolayer on the Cu(111) substrate. Our results show the semiconducting feature of CuSe monolayer with a band gap of 1.28 eV and the 1D periodical modulation of electronic properties by the 1D moiré patterns. Except for the uniaxially strained CuSe monolayer, we observed domain boundary and line defects in the CuSe monolayer, where the biaxial-strain and strain-free conditions can be investigated respectively. STS measurements for the three different strain regions show that the first peak in conduction band will move downward with the increasing strain. DFT calculations based on the three CuSe atomic models with different strain inside reproduced the peak movement. The present findings not only enrich the fundamental comprehension toward the influence of strain on electronic properties at 2D limit, but also offer the benchmark for the development of 2D semiconductor materials.  相似文献   

20.
This article reports on the physical and optical properties, absorption, and luminescence spectra in the visible region, of calcium zinc borophosphate glasses doped with manganese ions. The manganese composition was varied up to 10 mol%. The aim of this work was to investigate the effect of the luminescence properties when the glasses were doped with different compositions of manganese ions. X-ray diffraction profiles confirmed their glassy nature. The optical absorption spectrum showed bands characteristic of manganese ions in octahedral symmetry. Both excitation and emission spectra were recorded for these glasses to understand their optical performances. The emission spectrum showed a single broad band (green region) in octahedral symmetry at 582 nm as a result of transition from the upper 4T1g state to the 6A1g ground state of manganese ions. As the concentration of manganese ions increased, the emission band increased from 582 nm (green-light emission) to 650 nm (red-light emission). Apart from the spectral analysis, different physical properties of these glasses were also analyzed. Based on the physical and optical properties, we found the samples to be more promising for their use as novel luminescent optical materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号