首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   3篇
化学   67篇
晶体学   1篇
力学   1篇
物理学   37篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2015年   3篇
  2014年   5篇
  2013年   4篇
  2012年   10篇
  2011年   15篇
  2010年   7篇
  2009年   6篇
  2008年   7篇
  2007年   5篇
  2006年   7篇
  2005年   11篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1999年   2篇
  1980年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
1.
The sonochemical synthesis of gold nanoparticles (GNPs) with different shapes and size distributions by using high‐intensity focused ultrasound (HIFU) operating at 463 kHz is reported. GNP formation proceeds through the reduction of Au3+ to Au0 by radicals generated by acoustic cavitation. TEM images reveal that GNPs show irregular shapes at 30 W, are primarily icosahedral at 50 W and form a significant amount of nanorods at 70 W. The size of GNPs decreases with increasing acoustic power with a narrower size distribution. Sonochemiluminescence images help in the understanding of the effect of HIFU in controlling the size and shapes of GNPs. The number of radicals that form and the mechanical forces that are generated control the shape and size of the GNPs. UV/Vis spectra and TEM images are used to propose a possible mechanism for the observed effects. The results presented demonstrate, for the first time, that the HIFU system can be used to synthesise size‐ and shape‐controlled metal nanoparticles.  相似文献   
2.

This study aimed to investigate the antioxidant, anti-inflammatory and biosorption properties of starch nanocrystals (SNC). The characterization of synthesized SNC was done using various analytical techniques like microscopic and spectroscopic analysis. The antioxidant property was determined using DPPH (2,2-diphenyl-1-picrylhydrazyl) assay and metal ion chelating assay. SNC showed the highest scavenging activity of 70.03?±?0.74% at 100 µg/mL concentration. Protein denaturation assay and proteinase inhibitory assay depicted the anti-inflammatory property of SNC. The results revealed that the maximum inhibition activity was found at 100 µg/mL with 72.71% inhibition. The maximum removal efficiency was found to be 83.42% at pH 2.0 with 0.15 g biosorbent. As the pH increases, biosorption capacity of SNC were reduced from 8.17 to 6.30 mg/g and the efficiency of the dye removal was decreased from 80.95 to 36.01%. The shape of synthesized SNC was spherical nanoplatelets and it shows agglomeration. The Langmuir isotherm model is best suited for the biosorption experiments with the R2 value of 0.986. SNC were subjected to cytotoxic and phytotoxic evaluation. Cell viability and phytotoxic assays proves the non-toxic nature of the SNC.

  相似文献   
3.
The use of ultrasound as an external stimulus for promoting polymerization reactions has received increasing attention in recent years. In this Review article, the fundamental processes that can lead to either the homolytic cleavage of polymer chains, or the sonolysis of solvent (or other) small molecules, under the application of ultrasound are described. These reactions promote the production of reactive radicals, which can be utilized in chain-growth radical polymerizations under the right conditions. A full historical overview of the development of ultrasound-assisted radical polymerization is provided, with special attention given to the recently described systems that are “controlled” by methods of reversible (radical) deactivation. Perspectives are shared on what challenges still remain in polymer sonochemistry, as well as new areas that are yet to be explored.  相似文献   
4.
Collagen (C) and cellulose are prominent biopolymers from the animal and plant kingdom and widely used in bioengineering. Albumin, on the other hand, is the most abundant plasma protein present in mammalian blood. In this work, collagen extracted from animal skin waste was blended with hydroxyethyl cellulose (HEC) and bovine serum albumin (A) and wet-spun to form hybrid biodegradable C/HEC/A fibers. They were further cross-linked with glutaraldehyde vapors and analyzed. X-ray diffraction and infra-red spectroscopic studies of the hybrid fibers display peaks corresponding to collagen, cellulose, and albumin. Incorporation of cellulose into the biopolymeric matrix leads to a reasonable improvement in mechanical, swelling, and thermal properties of hybrid fibers. Addition of albumin improves the regularity of fiber surface without altering the porosity as observed under a microscope. Hence, the formed hybrid biofibers can be potentially used as a suture material as well as for different biomedical applications due to their improved properties.  相似文献   
5.
The effect of 8?MeV energy electron beam radiation at 40, 80 and 120?kGy dosage on surface morphology and thermal properties of lithium perchlorate-doped poly (vinylidene fluoride-co-hexafluoropropylene) polymer electrolyte films have been studied. The field emission scanning electron microscopic image shows small-porous structured morphology for unirradiated film, but it changed drastically into large and deep porous structure as well as the size of spherulites is reduced for 120?kGy confirming the influence of irradiation on morphology. The atomic force microscope reveals the significantly changed surface roughness of unirradiated film from 116.8 to 123.4?nm with a hill-like pattern morphology for 120?kGy confirming the increased amorphousity after irradiation. The thermal study confirmed that the decrease in the melting point of unirradiated film 160.86–155.24°C for 120?kGy doses is attributed to the formation of defects by the chain scissioning process resulting in the degradation of polymer electrolytes at high dose.  相似文献   
6.
Nd-doped and Nd, Cu co-doped ZnO nanoparticles (Zn0.96?xNd0.04CuxO, x = 0, 0.05, 0.1 and 0.15) were synthesized by sol–gel method. The structural and optical properties of the samples were investigated by X-ray diffraction (XRD) and UV–visible photo-spectrometer. The synthesized nanoparticles have different microstructure without changing a hexagonal wurtzite structure. CuO phase was noticed in XRD spectra at 38.73° after Cu = 5 % which was formed from remaining un-reacted Cu2+ ions. The average crystal size was gradually increased from Cu = 0 % (17 nm) to 15 % (17.6 nm) having lowest value (16.7 nm) at Cu = 5 %. The change in lattice parameters confirmed the substitution of Cu in Zn–Nd–O lattice. The observed constant c/a ratio revealed that there was no change in hexagonal wurtzite structure by Cu-doping. The energy dispersive X-ray spectra confirmed the presence of appropriate amount of Nd and Cu in Zn–O lattice. The optical absorption was increased gradually from Cu = 0–10 % and showed maximum at Cu = 10 % due to the presence of more nucleation centres and defect states. The defects related green band between 487 and 493 nm was due to the oxygen vacancies and intrinsic defects. The higher transmittance (≈ 90 %) noticed at Cu = 15 % leads to the industrial applications. The observed blue shift in energy gap from 3.49 eV (Cu = 0 %) to 3.65 eV (Cu = 10 %) and the red shift from Cu = 10 % (3.65 eV) to Cu = 15 % (3.61 eV) can be explained by the Burstein–Moss effect. Presence of chemical bonding was confirmed by Fourier transform infrared spectra.  相似文献   
7.
Ultrasonically synthesized core-shell microcapsules can be made of synthetic polymers or natural biopolymers, such as proteins and polysaccharides, and have found applications in food, drug delivery and cosmetics. This study reports on the ultrasonic synthesis of microcapsules using unmodified (natural) and biodegradable glycogen nanoparticles derived from various sources, such as rabbit and bovine liver, oyster and sweet corn, for the encapsulation of soybean oil and vitamin D. Depending on their source, glycogen nanoparticles exhibited differences in size and ‘bound’ proteins. We optimized various synthetic parameters, such as ultrasonic power, time and concentration of glycogens and the oil phase to obtain stable core-shell microcapsules. Particularly, under ultrasound-induced emulsification conditions (sonication time 45 s and sonication power 160 W), native glycogens formed microcapsules with diameter between 0.3 μm and 8 μm. It was found that the size of glycogen as well as the protein component play an important role in stabilizing the Pickering emulsion and the microcapsules shell. This study highlights that native glycogen nanoparticles without any further tedious chemical modification steps can be successfully used for the encapsulation of nutrients.  相似文献   
8.
The measurement of biologically relevant anions, such as fluoride, is an important task in analytical chemistry, in particular, for dental health and osteoporosis. Although a large number of fluoride probes are known, the applicability under relevant conditions is limited to a few examples. To improve this situation, BODIPY‐amidothiourea dyes with varying hydrogen‐bond donating strengths were developed, the most H‐acidic of which ( 1 c ) could detect F? from an inorganic source (NaF) in 50 % aqueous solution (DMSO/water 1:1, v/v) with 0.01 ppm sensitivity through selective fluorescence quenching by a photoinduced electron‐transfer (PET) process. Use of the probe and a reference dye with a test‐strip assay and a portable and rapidly recording lateral‐flow fluorescence reader made determination of F? in neat aqueous solutions, such as spiked water samples and toothpaste extracts, possible in a self‐referenced manner, achieving a detection limit of 0.2 ppm.  相似文献   
9.
Bimetallic Co–Ni catalysts in the composition range Co(1?x)Nix with x?=?0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and 1.0, with total metal loading of 15% w/w and supported on TiO2-P25, have been prepared by chemical reduction of the metal acetates by glucose in aqueous alkaline medium and characterized by XRD, TEM, TPR, XPS and H2-TPD techniques. Selective hydrogenation of cinnamaldhyde (CAL) to hydrocinnamaldehyde (HCAL), cinnamyl alcohol (COL) and hydrocinnamyl alcohol (HCOL) has been investigated at 20 bar pressure, in the temperature range 120–140 °C. Co/Ni crystallite sizes in the range 6.0?±?1 nm are observed by TEM. TPR and XPS results indicate the formation of nanoscale Co–Ni alloys, which tend to weaken M–H bond strength, as revealed by H2-TPD measurements. Ni/TiO2 displays very high conversion of CAL (86.9%) with high selectivity (78.7%) towards HCAL formation at 140 °C. Co/TiO2, on the other hand, exhibits relatively lower CAL conversion (55%) and higher selectivity (61.3%) for COL formation at the same temperature. However, bi-metallic Co–Ni catalysts in the composition range x?=?0.3–0.6 display very high conversion (>?98%) due to alloy formation and weakening of M–H bonds. Bimetallic Co0.7Ni0.3 catalyst displays high conversion of CAL (98.1%) and high selectivity (82.9%) towards HCOL. Overall CAL hydrogenation activity at 140 °C, when expressed as TOF, displays a maximum value at the composition Co0.5Ni0.5. Activity and selectivity patterns have been rationalized based on the reaction pathways observed on the catalysts and the influence of Co–Ni alloy formation and M–H bond strength. Thus, a synergetic effect, originating from an appropriate composition of base metal catalysts and reaction conditions, could result in hydrogenation activity comparable with noble metal based catalysts.  相似文献   
10.
Isochrysis is a genus of marine algae without cell wall and capable of accumulating lipids. In this study, the lipid production potential of Isochrysis was assessed by comparing 15 Isochrysis strains with respect to their growth rate, lipid production, and fatty acid profiles. Three best strains were selected (lipid productivity, 103.0~121.7 mg L?1 day?1) and their lipid-producing capacities were further examined under different controlled parameters, e.g., growth phase, medium nutrient, and light intensity in laboratory cultures. Furthermore, the three Isochrysis strains were monitored in outdoor panel photobioreactors with various initial cell densities and optical paths, and the strain CS177 demonstrated the superior potential for outdoor cultivation. A two-stage semi-continuous strategy for CS177 was subsequently developed, where high productivities of biomass (1.1 g L?1 day?1) and lipid (0.35 g L?1 day?1) were achieved. This is a comprehensive study to evaluate the lipid-producing capability of Isochrysis strains under both indoor and outdoor conditions. Results of the present work lay a solid foundation for the physiological and biochemical responses of Isochrysis to various conditions, shedding light on the future utilization of this cell wall-lacking marine alga for biofuel production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号