首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
The present work deals with the synthesis of titanium dioxide nanoparticles doped with Fe and Ce using sonochemical approach and its comparison with the conventional doping method. The prepared samples have been characterized using X-ray diffraction (XRD), FTIR, transmission electron microscopy (TEM) and UV–visible spectra (UV–vis). The effectiveness of the synthesized catalyst for the photocatalytic degradation of crystal violet dye has also been investigated considering crystal violet degradation as the model reaction. It has been observed that the catalysts prepared by sonochemical method exhibit higher photocatalytic activity as compared to the catalysts prepared by the conventional methods. Also the Ce-doped TiO2 exhibits maximum photocatalytic activity followed by Fe-doped TiO2 and the least activity was observed for only TiO2. The presence of Fe and Ce in the TiO2 structure results in a significant absorption shift towards the visible region. Detailed investigations on the degradation indicated that an optimal dosage with 0.8 mol% doping of Ce and 1.2 mol% doping of Fe in TiO2 results in higher extents of degradation. Kinetic studies also established that the photocatalytic degradation followed the pseudo first-order reaction kinetics. Overall it has been established that ultrasound assisted synthesis of doped photocatalyst significantly enhances the photocatalytic activity.  相似文献   

2.
Na5PV2Mo10O40 supported on nanoporous anatase TiO2 particles, TiO2–PVMo, was used as an efficient photocatalyst for photocatalytic degradation of different dyes by visible light using oxygen as oxidant. This catalyst showed a good catalytic activity in the sonocatalytic and sonophotocatalytic decomposition of different dyes in aqueous solutions. The TiO2–PVMo composite showed higher photocatalytic and sonocatalytic activity than pure polyoxometalate or pure TiO2.  相似文献   

3.
In this article, an acoustic cavitation engineered novel approach for the synthesis of TiO2, cerium and Fe doped TiO2 nanophotocatalysts is reported. The prepared TiO2, cerium and Fe doped TiO2 nanophotocatalysts were characterized by XRD and TEM analysis to evaluate its structure and morphology. Photo catalytic performance of undoped TiO2 catalyst was investigated for the decolorization of crystal violet dye in aqueous solution at pH of 6.5 in the presence of hydro dynamic cavitation. Effect of catalyst doping with Fe and Ce was also studied for the decolorization of crystal violet dye. The results shows that, 0.8% of Fe-doped TiO2 exhibits maximum photocatalytic activity in the decolorization study of crystal violet dye due to the presence of Fe in the TiO2 and it may acts as a fenton reagent. Kinetic studies have also been reported for the hybrid AOP (HAOP) that followed the pseudo first-order reaction kinetics.  相似文献   

4.
A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high catalytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a facile method and employed for the in situ SERS monitoring of the photocatalytic degradation reaction of crystal violet. Through the variation of the AgNO3 concentration, Ag content on the Cu2O template can be controllably tuned, which has great influence on the SERS effect. The results indicate that Ag nanoparticles form on the Cu2O nanoframes to obtain the Cu2O/Ag nanocomposite, which can act as an excellent bifunctional platform for in situ monitoring of photocatalytic degradation of organic pollutions by SERS.  相似文献   

5.
In this study, new nanoscale photocatalyst based on silver and CNTs/TiO2 was successfully prepared by photoreduction method. The prepared Ag-CNTs/TiO2 was characterized by TEM, XRD and XPS. The photocatalytic activity was also evaluated by photocatalytic degradation of Reactive Brilliant Red X-3B dye. The results indicated that the photocatalytic efficiency of CNTs/TiO2 increased in the presence of Ag nanoparticles and the photocatalysis reaction followed a first order kinetics. The kinetic constant of Ag-CNTs/TiO2 for dye degradation was nearly 1.2 times than that of CNTs/TiO2, which indicated decorating Ag nanoparticles on CNTs/TiO2 could enhance the photocatalytic ability.  相似文献   

6.
《Ultrasonics sonochemistry》2014,21(5):1675-1681
An attempt has been made to render the visible light driven photocatalytic activity to the TiO2 nanocatalysts by loading 1 wt% of rare earth (RE) nanoclusters (Gd3+, Nd3+ and Y3+) using a low frequency (42 kHz) producing commercial sonicator. The STEM-HAADF analysis confirms that the RE nanoclusters were residing at the surface of the TiO2. Transmission electron microscopic (TEM) and X-ray diffraction (XRD) analyses confirm that the loading of RE nanoclusters cannot make any significant changes in the crystal structure of TiO2. However, the optical properties of the resulted nanocatalysts were significantly modified and the nanocatalysts were employed to study the sonocatalytic, photocatalytic and sonophotocatalytic decolorization as well as mineralization of Acid Blue 113 (AB113). Among the experimented nanocatalysts maximum degradation of AB113 was achieved in the presence Y3+-TiO2 nanocatalysts. The decolorization of AB113 in the presence and absence of Y3+ loaded TiO2 ensues the following order sonolysis < photocatalysis < sonocatalysis < sonophotocatalysis. The sonophotocatalytic decolorization of AB113 shows 1.4-fold (synergy index) enhanced rate when compared with the two corresponding individual advanced oxidation processes. The sonophotocatalytic mineralization shows that 65% of total organic carbon (TOC) can be removed from AB113 after the 5 h of continuous irradiation however the mineralization cannot be able to show the synergetic effect.  相似文献   

7.
In this research, a sonochemical activation-assisted biosynthesis of Au/Fe3O4 nanoparticles is proposed. The proposed synthesis methodology incorporates the use of Piper auritum (an endemic plant) as reducing agent and in a complementary way, an ultrasonication process to promote the synthesis of the plasmonic/magnetic nanoparticles (Au/Fe3O4). The synergic effect of the green and sonochemical synthesis favors the well-dispersion of precursor salts and the subsequent growth of the Au/Fe3O4 nanoparticles.The hybrid green/sonochemical process generates an economical, ecological and simplified alternative to synthesizing Au/Fe3O4 nanoparticles whit enhanced catalytic activity, pronounced magnetic properties. The morphological, chemical and structural characterization was carried out by high- resolution Scanning electron microscopy (HR-SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray diffraction (XRD), respectively. Ultraviolet–visible (UV–vis) and X-ray photoelectron (XPS) spectroscopy confirm the Au/Fe3O4 nanoparticles obtention. The magnetic properties were evaluated by a vibrating sample magnetometer (VSM). Superparamagnetic behavior, of the Au/ Fe3O4 nanoparticles was observed (Ms = 51 emu/g and Hc = 30 Oe at 300 K). Finally, the catalytic activity was evaluated by sonocatalytic degradation of methyl orange (MO). In this stage, it was possible to achieve a removal percentage of 91.2% at 15 min of the sonocatalytic process (160 W/42 kHz). The initial concentration of the MO was 20 mg L−1, and the Fe3O4-Au dosage was 0.075 gL−1. The MO degradation process was described mathematically by four kinetic adsorption models: Pseudo-first order model, Pseudo-second order model, Elovich and intraparticle diffusion model.  相似文献   

8.
A magnetic cotton/polyester fabric with photocatalytic, sonocatalytic, antibacterial and antifungal activities was successfully prepared through in-situ sonosynthesis method under ultrasound irradiation. The process involved the oxidation of Fe2+ to Fe3+ via hydroxyl radicals generated through bubbles collapse in ultrasonic bath. The treated samples were analyzed by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. Photocatalytic and sonocatalytic activities of magnetite treated fabrics were also evaluated toward Reactive Blue 2 decoloration under sunlight and ultrasound irradiation. Central composite design based on response surface methodology was applied to study the influence of iron precursor, pH and surfactant concentration to obtain appropriate amount for the best magnetism. Findings suggested the potential of one-pot sonochemical method to synthesize and fabricate Fe3O4 nanoparticles on cotton/polyester fabric possessing appropriate saturation magnetization, 95% antibacterial efficiency against Staphylococcus aureus and 99% antifungal effect against Candida albicans, 87% and 70% dye photocatalytic and sonocatalytic decoloration along with enhanced mechanical properties using only one iron rich precursor at low temperature.  相似文献   

9.
Polyoxometalates (POM) supported on zirconia, H3PW12O40/ZrO2, were prepared by incorporating polyphosphotungstate into a zirconia matrix via sol-gel technique that involving the hydrolysis of zirconium (IV) n-butoxide, Zr (n-OBu)4, as the ZrO2 source. This insoluble and readily separable catalyst was characterized by using XRD, FT-IR, SEM, and UV diffuse reflectance spectroscopy (UV-DRS), indicating that the polyphosphotungstate was chemically attached to the zirconia supports, and primary Keggin structure remained intact. The photocatalytic and sonocatalytic activity of the supported polyphosphotungstate was tested via degradation of different dyes in aqueous solutions. The POM-ZrO2 nanocomposite showed higher photocatalytic and sonocatalytic activity than pure polyoxometalate or pure ZrO2.  相似文献   

10.
The degradation and mineralization of orange-G (OG) in aqueous solutions by means of ultrasound irradiation at a frequency of 213 kHz and its combination with a heterogeneous photocatalyst (TiO2) were investigated. The effects of various operational parameters such as, the concentration of the dye and solution pH on the degradation efficiency were studied. The degradation of the dye followed first-order like kinetics under the conditions examined. The sonolytic degradation of OG was relatively higher at pH 5.8 than that at pH 12. However, an alkaline pH was favoured for the photocatalytic degradation of OG using TiO2. Total organic carbon (TOC) measurements were also carried out in order to evaluate the mineralization efficiency of OG using sonolysis, photocatalysis and sonophotocatalysis. The hybrid technique of sonophotocatalytic degradation was compared with the individual techniques of photocatalysis and sonolysis. A simple additive effect was observed during the sonophotocatalytic oxidation of OG using TiO2 indicating that the combined treatment offers no synergistic enhancement. TOC results also support the additive effect in the dual treatment process.  相似文献   

11.
TiO2 nanoparticles modified with MWCNTs and CdS were synthesized by the sol–gel method followed by solvothermal treatment at low temperature. The chemical composition and surface structure of the CdS/CNT–TiO2 composites were investigated by X-ray diffraction, specific surface area measurements, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. Then a series of sonocatalytic degradation experiments were carried out under ultrasonic irradiation in the presence of CNT/TiO2 and the CdS/CNT–TiO2 composites. It was found that RhB was quickly and effectively degraded under different ultrasonic conditions. As expected, the nanosized CdS/CNT–TiO2 photocatalyst showed enhanced activity compared with the non CdS treated CNT/TiO2 material in the sonocatalytic degradation of RhB. The sonocatalyst CCTb with 34.68% contents of Ti heat treated at 500 °C for 1 h showed the highest sonocatalytic activity. The synergistic effect of the greater surface area and catalytic activities of the composite catalysts was examined in terms of their strong adsorption ability and interphase interaction by comparing the effects of different amounts of MWCNTs and CdS in the catalysts and their roles. The mechanism of sonocatalytic degradation over the CdS/CNT modified TiO2 composites under different ultrasonic conditions was also discussed.  相似文献   

12.
In this work, γ-Fe2O3 and TiO2 NTs/γ-Fe2O3 composites with good magnetism and sonocatalytic activity were prepared by a facile polyol method and utilize the principle of isoelectric point method, respectively. The structural and magnetic features of the prepared calcined γ-Fe2O3 and composite catalysts were investigated by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), surface analysis, UV–Vis diffuse reflectance spectra (UV–Vis DRS), vibrating sample magnetometry (VSM) and zeta potential analysis. The effects of calcination temperature on γ-Fe2O3 phase variation, physical properties and sonocatalytic properties were investigated. The porosity, specific surface area, band gap energy and sonocatalytic activity of γ-Fe2O3 were gradually decreased with calcination temperature increased. TiO2 NTs/γ-Fe2O3 with appropriate composition and specific structural features possess synergetic effects such as efficient separation of charge carriers and hydroxyl radicals produced by heterogeneous fenton and fenton-like reactions. This enhanced the sonocatalytic activity for the degradation of Orange G under ultrasonic irradiation. The sonocatalytic reactions obeyed pseudo first-order kinetics. All these information provide insight into the design and development of high-efficiency catalyst for wastewater treatment.  相似文献   

13.
A new organic-inorganic nanohybrid compound, ([Cu{(HOCH2CH2)2NCS2}2]3[PMo12O40] (1)), has been prepared by sonochemical technique using copper(II) dithiocarbamate complex and a Keggin-type polyoxomolybdate in this research. FT-IR, XRD, FE-SEM, TEM, EDX, UV–Vis, TGA, BET, and single crystal XRD analyses were applied to describe the properties of the composition of the nanohybrid. Compound (1) is composed of [PMo12O40]3– building blocks and [Cu{(HOCH2CH2)2NCS2}2]1+ cationic moieties, and electrostatic forces and substantial hydrogen-bonding interactions were applied to pack them; and consequently, a three dimensional supramolecular framework was made based on single-crystal X-ray diffraction patterns. FE-SEM and TEM images approved the morphology of the nanohybrid sample to be extremely penetrable. Very good sonocatalytic performance is shown by this supramolecular nanohybrid in the degradation of Rhodamine B (RhB), which is a cationic organic dye. The results showed complete degradation of cationic RhB (25 mg/L) within 70 min with the rate constant of 0.039min−1 in the presence of nanohybrid (1) and H2O2 (4 mmol/L). Also, sonocatalytic activity of the nanohybrid (1) was higher than H3PMo12O40, showing that the combining Cu(DEDTC)2 complex with H3PMo12O40 could be an excellent choice to improve its sonocatalytic activity. The used nanohybrid (1) can be recycled after easily removing from the reaction media by centrifuging, and there was no considerable loss of catalytic activity and retention of the structure.  相似文献   

14.
An ultrasound-assisted method was used for synthesizing nanosized Pt-graphene oxide (GO)-TiO2 photocatalyst. The Pt-GO-TiO2 nanoparticles were characterized by diffused reflectance spectroscopy, X-ray diffraction, N2 BET adsorption-desorption measurements, atomic force microscopy and transmission electron microscopy. The photocatalytic and sonophotocatalytic degradation of a commonly used anionic surfactant, dodecylbenzenesulfonate (DBS), in aqueous solution was carried out using Pt-GO-TiO2 nanoparticles in order to evaluate the photocatalytic efficiency. For comparison purpose, sonolytic degradation of DBS was carried out. The Pt-GO-TiO2 catalyst degraded DBS at a higher rate than P-25 (TiO2), prepared TiO2 or GO-TiO2 photocatalysts. The mineralization of DBS was enhanced by a factor of 3 using Pt-GO-TiO2 compared to the P-25 (TiO2). In the presence of GO, an enhanced rate of DBS oxidation was observed and, when doped with platinum, mineralization of DBS was further enhanced. The Pt-GO-TiO2 catalyst also showed a considerable amount of degradation of DBS under visible light irradiation. The initial solution pH had an effect on the rate of photocatalytic oxidation of DBS, whereas no such effect of initial pH was observed in the sonochemical or sonophotocatalytic oxidation of DBS. The intermediate products formed during the degradation of DBS were monitored using electrospray mass spectrometry. The ability of GO to serve as a solid support to anchor platinum particles on GO-TiO2 is useful in developing new photocatalysts.  相似文献   

15.
Magnetic CoFe2O4@ZnS core-shell nanocomposite was successfully synthesized via one-step hydrothermal decomposition of zinc(II) diethanoldithiocarbamate complex over CoFe2O4 nanoparticles at low temperature of 200 °C. The obtained nanocomposite was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, UV–Vis spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, magnetic measurements, and Brunauere-Emmette-Teller. The results confirmed the formation of CoFe2O4@ZnS nanocomposite with the average crystallite size of 18 nm. The band gap of 3.4 eV was obtained using UV–vis absorption of CoFe2O4@ZnS nanocomposite, which made it a suitable candidate for sono-/photo catalytic processes. This nanocomposite was applied as a novel sonocatalyst for the degradation of organic pollutants under ultrasound irradiation. The results showed complete degradation of methylene blue (MB) (25 mg/L) within 70 min in the presence of CoFe2O4@ZnS nanocomposite and H2O2 (4 mM). The trapping experiments indicated that OH radicals are the main active species in dye degradation. In addition, sonocatalytic activity of the CoFe2O4@ZnS nanocomposite was higher than those of pure ZnS and CoFe2O4, showing that the combining ZnS with magnetic CoFe2O4 could be an excellent choice to improve its sonocatalytic activity. The nanocomposite could be magnetically separated and reused without any observable change in its structure and performance even after five consecutive runs.  相似文献   

16.
Sonocatalysis has attracted excellent research attention to eradicate hazardous pollutants from the environment effectively. This work synthesised an organic/inorganic hybrid composite catalyst by coupling Fe3O4@MIL-100(Fe) (FM) with ZnS nanoparticles using the solvothermal evaporation method. Remarkably, the composite material delivered significantly enhanced sonocatalytic efficiency for removing tetracycline (TC) antibiotics in the presence of H2O2 compared to bare ZnS nanoparticles. By adjusting different parameters such as TC concentration, catalyst dosage and H2O2 amount, the optimized composite (20 %Fe3O4@MIL-100(Fe)/ZnS) removed 78.25% antibiotic in 20 min at the cost of 1 mL of H2O2. These much superior activities are attributed to the efficient interface contact, effective charge transfer, accelerated transport capabilities and strong redox potential for the superior acoustic catalytic performance of FM/ZnS composite systems. Based on various characterization, free radical capture experiments and energy band structures, we proposed a mechanism for the sonocatalytic degradation of tetracycline based on S-scheme heterojunctions and Fenton like reactions. This work will provide an important reference for developing ZnS-based nanomaterials to study sonodegradation of pollutants.  相似文献   

17.
In this paper, the photocatalytic degradation of Reactive Black 5 (RB5) was investigated with ferrite bismuth synthesized via ultrasound under direct sunlight irradiation. The intensity of absorption peaks of RB5 gradually decreased by increasing the irradiation time and finally vanished in 50 min in acidic medium. The formation of new intermediate was observed in basic medium. The relative concentration of RB5 in solution and on the surface of ferrite bismuth (BiFeO3) nanoparticles was considered during the experiment in acidic and basic media. The effects of various parameters such as amount of catalyst, concentration of dye, and pH of the solution have been studied on the dye degradation. The adsorption isotherm and the kinetic of photocatalytic degradation of RB5 were investigated. The adsorption constants in the dark and in the presence of sunlight irradiation were compared. The photocatalytic degradation mechanism of RB5 has been evaluated through the addition of some scavengers to the solution. In addition, the stability and reusability of the catalyst were examined in this work.  相似文献   

18.
以天然木棉为模板,利用造孔及纳米颗粒自组装两步法合成了分级多孔的Cafe2O4/C复合催化剂. Cafe2O4/C复合催化剂保留了木棉模板的中空纤维形貌,且该中空纤维是由碳及均匀分布在碳表面的Cafe2O4纳米颗粒组成. 该复合催化剂具有较强的甲基紫微波催化降解活性. 研究了Cafe2O4负载量、微波功率、催化剂用量、甲基紫的初始浓度和pH值对微波诱导甲基紫降解的影响. 结果表明,Cafe2O4/C微波降解甲基紫的催化反应具有较高的反应速率和较短的反应时间. 其降解反应符合一级动力学模型. Cafe2O4/C 高的催化活性得益于催化反应和吸附特性之间的协同作用.  相似文献   

19.
A series of ZnO nanoparticles decorated on multi-walled carbon nanotubes (ZnO/CNTs composites) was synthesized using a facile sol method. The intrinsic characteristics of as-prepared nanocomposites were studied using a variety of techniques including powder X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM), transmission electron microscope (TEM), scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDX), Brunauer Emmett Teller (BET) surface area analyzer and X-ray photoelectron spectroscopy (XPS). Optical properties studied using UV–Vis diffuse reflectance spectroscopy confirmed that the absorbance of ZnO increased in the visible-light region with the incorporation of CNTs. In this study, degradation of Rhodamine B (RhB) as a dye pollutant was investigated in the presence of pristine ZnO nanoparticles and ZnO/CNTs composites using photocatalysis and sonocatalysis systems separately and simultaneously. The adsorption was found to be an essential factor in the degradation of the dye. The linear transform of the Langmuir isotherm curve was further used to determine the characteristic parameters for ZnO and ZCC-5 samples which were: maximum absorbable dye quantity and adsorption equilibrium constant. The natural sunlight and low power ultrasound were used as an irradiation source. The experimental kinetic data followed the pseudo-first order model in photocatalytic, sonocatalytic and sonophotocatalytic processes but the rate constant of sonophotocatalysis is higher than the sum of it at photocatalysis and sonocatalysis process. The sonophotocatalysis was always faster than the respective individual processes due to the more formation of reactive radicals as well as the increase of the active surface area of ZnO/CNTs photocatalyst. Chemical oxygen demand (COD) of textile wastewater was measured at regular intervals to evaluate the mineralization of wastewater.  相似文献   

20.
Nanostructure titanium dioxide (TiO2) has been synthesized by hydrolysis of titanium tetrachloride in aqueous solution and Ag-TiO2 nanoparticles were synthesized by photoreduction method. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared (FT-IR) and UV-vis absorption spectroscopy. The experimental results showed that the sizes of the synthesized TiO2 and Ag-TiO2 particles are in the range of 1.9-3.2 nm and 2-10 nm, respectively. Moreover, Ag-TiO2 nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO2. The positive effect of silver on the photocatalytic activity of TiO2 may be explained by its ability to trap electrons. This process reduces the recombination of light generated electron-hole pairs at TiO2 surface and therefore enhances the photocatalytic activity of the synthesized TiO2 nanoparticles. The effects of initial dye and nanoparticle concentrations on the photocatalytic activity have been studied and the results demonstrate that the dye photodegradation follows pseudo-first-order kinetics. The observed maximum degradation efficiency of SO is about 60% for TiO2 and 96% for Ag-TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号