首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonsteroidal anti-inflammatory drug sodium diclofenac (DC) is an emerging water pollutant which resists conventional wastewater treatments. Here the sonophotocatalytic degradation of DC was carried out using micrometric TiO2 (both pristine and Ag-decorated), UV-A irradiation and 20 kHz pulsed ultrasound. Sonophotocatalytic tests were compared with photolysis, sonolysis, sonophotolysis, sonocatalysis and photocatalysis data performed in the same conditions. A synergy index of over 2 was determined for tests with pristine TiO2, while values close to 1.3 were observed for Ag-TiO2. Reaction intermediates were studied by HPLC–MS, showing degradation mechanisms activated by hydroxyl radicals. Similar pathways were identified for photocatalytic and sonophotocatalytic tests, although the latter led to more oxidized compounds. Different reactor configurations (static and dynamic set ups) were studied. Sequential and simultaneous application of UV light and ultrasound led to similar performance. The role of water matrix was investigated using ultrapure and drinking water, showing marked detrimental effects of electrolytes on the DC degradation. Overall, the combined treatment proved more efficient than photocatalysis alone especially in demanding working conditions, like in drinking water matrices.  相似文献   

2.
The degradation and mineralization of orange-G (OG) in aqueous solutions by means of ultrasound irradiation at a frequency of 213 kHz and its combination with a heterogeneous photocatalyst (TiO2) were investigated. The effects of various operational parameters such as, the concentration of the dye and solution pH on the degradation efficiency were studied. The degradation of the dye followed first-order like kinetics under the conditions examined. The sonolytic degradation of OG was relatively higher at pH 5.8 than that at pH 12. However, an alkaline pH was favoured for the photocatalytic degradation of OG using TiO2. Total organic carbon (TOC) measurements were also carried out in order to evaluate the mineralization efficiency of OG using sonolysis, photocatalysis and sonophotocatalysis. The hybrid technique of sonophotocatalytic degradation was compared with the individual techniques of photocatalysis and sonolysis. A simple additive effect was observed during the sonophotocatalytic oxidation of OG using TiO2 indicating that the combined treatment offers no synergistic enhancement. TOC results also support the additive effect in the dual treatment process.  相似文献   

3.
The present study evaluated inactivation efficiency of a sonophotocatalytic process using ZnO nanofluids including ultrasonic parameters such as power density, frequency and time. The result showed that inactivation efficiency was increased by 20% when ultrasonic irradiation was combined with photocatalytic process in the presence of natural light. Comparison of inactivation efficiency in photocatalytic, ultrasonic and sonocatalytic processes using Escherichia coli as a model bacteria identified that inactivation efficiencies are shown in the following order: ultrasonic irradiation < sonocatalysis < photocatalysis < sonophotocatalysis. Furthermore, inactivation mechanism of sonophotocatalysis was proposed. Studies of reactive oxygen species (ROS) and zinc ions (Zn2+) release evaluation revealed that ROS play a key role in bacterial inactivation rather than Zn2+. Permeability of outer membrane (OM) and inner membrane (IM) of E. coli bacterial cells were studied and exhibited that sonophotocatalysis increased the permeability of OM and IM significantly. The enhanced bacterial inactivation effect in sonophotocatalytic process contributed to acoustic cavitation, sonocatalysis of ZnO and sonoporation phenomenon.  相似文献   

4.
A system of ultrasound radiation coupled with Zn0 was applied to degrade diclofenac. The effects of initial pH, dosage of Zn0 and ultrasound density were investigated. To further explore the mechanism of the microcosmic reaction, the fresh and used Zn0 powders were characterized by SEM, XRD and XPS. Radical scavengers were used to determine the oxidation performance of strong oxidizing free radicals on diclofenac, including hydroxyl radicals and superoxide radicals. The results showed that the optimum removal of diclofenac reached to over 85% at pH of 2.0 in 15 min, with Zn0 dosage of 0.1 g/L and ultrasound density of 0.6 W/cm3. TOC removal of 72.6% in 15 min and dechlorination efficiency of diclofenac reached 70% in 30 min. Characterization results showed that a ZnO membrane was generated on the surface of Zn particles after use. According to the mass spectrometry results, several possible pathways of diclofenac degradation were proposed, and most diclofenac was turned into micro-molecules or CO2 finally. The synergistic effect of US/Zn0 in the reactions led to a proposed degradation mechanism in which zinc could directly attack the target contaminant diclofenac because of its good reducibility with the auxiliary functions of ultrasonic irradiation, mechanical shearing and free radical oxidation.  相似文献   

5.
Degradation of seven relevant pharmaceuticals with different chemical structures and properties: acetaminophen (ACE), cloxacillin (CXL), diclofenac (DCF), naproxen (NPX), piroxicam (PXC), sulfacetamide (SAM) and cefadroxil (CDX), in distilled water and mineral water by ultrasound was studied herein. Firstly, proper conditions of frequency and acoustic power were determined based on the degradation ability of the system and the accumulation of sonogenerated hydrogen peroxide (24.4 W and 375 kHz were found as the suitable conditions for the sonochemical treatment of the pharmaceuticals). Under such conditions, the pharmaceuticals degradation order in distilled water was: PXC > DCF ~ NPX > CXL > ACE > SAM > CDX. In fact, the initial degradation rate showed a good correlation with the Log P parameter, most hydrophobic compounds were eliminated faster than the hydrophilic ones. Interestingly, in mineral water, the degradation of those hydrophilic compounds (i.e., ACE, SAM and CDX) was accelerated, which was attributed to the presence of bicarbonate ions. Afterwards, mineral water containing six different initial concentrations (i.e., 0.331, 0.662, 3.31, 16.55, 33.1, and 331 µM) of selected pharmaceuticals was sonicated, the lowest concentration (0.331 µM) always gave the highest degradation of the pollutants. This result highlights the great ability of the sonochemical process to treat bicarbonate-rich waters containing pollutants at trace levels, as pharmaceuticals. Finally, the addition of ferrous ions to the sonochemical system to generate a sono-Fenton process resulted in an acceleration of degradation in distilled water but not in mineral water. This was attributed to the scavenging of sonogenerated HO• by bicarbonate anion, which decreases H2O2 accumulation, thus limiting the Fenton reaction.  相似文献   

6.
Diclofenac is a widely used anti-inflammatory non-steroidal drug that escapes conventional urban wastewater treatment trains because of its resistance to biodegradation. Therefore it is frequently found in treated effluents, lakes and rivers. It has been reported that diclofenac can exhibit adverse effects on aquatic organisms. Advanced oxidation processes like ozonation (O3) and sonolysis (US) can be employed for the removal of such recalcitrant compounds from water matrices. This study included the investigation of the efficiency of O3 and US and also of their combined application (US + O3) for the degradation and potential mineralization of diclofenac in a water matrix. Under the conditions applied, all three systems proved to be effective in inducing diclofenac oxidation, leading to 22% of mineralization for O3 and 36% for US after 40 min of treatment. The synergy observed in the combined schemes, mainly due to the effects of US in enhancing the O3 decomposition, led to higher mineralization (about 40%) for 40 min treatment, and to a significantly higher mineralization level for shorter treatment duration.  相似文献   

7.
This work considered the sonochemical degradation (using a bath-type reactor, at 375 kHz and 106.3 W L-1, 250 mL of sample) of three representative halogenated pharmaceuticals (cloxacillin, diclofenac, and losartan) in urine matrices. The action route of the process was initially established. Then, the selectivity of the sonochemical system, to degrade the target pharmaceuticals in simulated fresh urine was compared with electrochemical oxidation (using a BDD anode, at 1.88 mA cm−2), and UVC/H2O2 (at 60 W of light and 500 mol L-1 of H2O2). Also, the treatment of cloxacillin in an actual urine sample by ultrasound and UVC/H2O2 was evaluated. More than 90% of the target compounds concentration, in the simulated matrix, was removed after 60 min of sonication. However, the sono-treatment of cloxacillin in the real sample was less efficient than in the synthetic urine. The ultrasonic process achieved 43% of degradation after 90 min of treatment in the actual matrix. In the sonochemical system, hydroxyl radicals in the interfacial zone were the main degrading agents. Meanwhile, in the electrochemical process, electrogenerated HOCl was responsible for the elimination of pharmaceuticals. In turn, in UVC/H2O2 both direct photolysis and hydroxyl radicals degraded the target pollutants. Interestingly, the degradation by ultrasound of the pharmaceuticals in synthetic fresh urine was very close to the observed in distilled water. Indeed, the sonodegradation had a higher selectivity than the other two processes. Despite the sono-treatment of cloxacillin was affected by the actual matrix components, this contrasts with the UVC/H2O2, which was completely inhibited in the real urine. The sonochemical process led to 100% of antimicrobial activity (AA) elimination after 75 min sonication in the synthetic urine, and ∼ 20% of AA was diminished after 90 min of treatment in the real matrix. The AA decreasing was linked to the transformations of the penicillin nucleus on cloxacillin, the region most prone to electrophilic attacks by radicals according to a density theory functional analysis. Finally, predictions of biological activity confirmed that the sono-treatment decreased the activity associated with cloxacillin, diclofenac, and losartan, highlighting the positive environmental impact of degradation of chlorinated pharmaceuticals in urine.  相似文献   

8.
《Ultrasonics sonochemistry》2014,21(5):1675-1681
An attempt has been made to render the visible light driven photocatalytic activity to the TiO2 nanocatalysts by loading 1 wt% of rare earth (RE) nanoclusters (Gd3+, Nd3+ and Y3+) using a low frequency (42 kHz) producing commercial sonicator. The STEM-HAADF analysis confirms that the RE nanoclusters were residing at the surface of the TiO2. Transmission electron microscopic (TEM) and X-ray diffraction (XRD) analyses confirm that the loading of RE nanoclusters cannot make any significant changes in the crystal structure of TiO2. However, the optical properties of the resulted nanocatalysts were significantly modified and the nanocatalysts were employed to study the sonocatalytic, photocatalytic and sonophotocatalytic decolorization as well as mineralization of Acid Blue 113 (AB113). Among the experimented nanocatalysts maximum degradation of AB113 was achieved in the presence Y3+-TiO2 nanocatalysts. The decolorization of AB113 in the presence and absence of Y3+ loaded TiO2 ensues the following order sonolysis < photocatalysis < sonocatalysis < sonophotocatalysis. The sonophotocatalytic decolorization of AB113 shows 1.4-fold (synergy index) enhanced rate when compared with the two corresponding individual advanced oxidation processes. The sonophotocatalytic mineralization shows that 65% of total organic carbon (TOC) can be removed from AB113 after the 5 h of continuous irradiation however the mineralization cannot be able to show the synergetic effect.  相似文献   

9.
Thermal behavior of amylose/TiO2 films under ultrasonic irradiation was investigated, and the final product of each process was applied to prepare amylose/TiO2 nanocomposite films. The effects of different degradation techniques on thermal behavior, crystallinity, and molecular weight distribution of amylose were surveyed. The evaluations of structural changes and thermal behaviors were performed by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetry analysis, FT-IR spectroscopy, and scanning electron microscopy. The XRD results clarified that the crystalline shape of amylose molecules formed is an A-type crystal due to the sonophotocatalytic processing, while the FT-IR spectra does not approve any chemical change in amylose structure. The DSC data submitted a broad endothermic peak for amylose. In the case of high loading of nanoparticles, the endothermic analysis results and diffraction peaks for the sonophotocatalytic process were not significant. This indicates that the length of amylose chains through the sonophotocatalytic degradation became smaller. An increase at the loading of TiO2 improved the hydrophilic properties of amylose/TiO2 films, which leads to the modification of water absorption behavior. Mechanical properties of amylose/TiO2 films were affected by the uniform dispersion of TiO2 in the polymer matrix.  相似文献   

10.
In this study, Ag or Al-doped TiO2/ZnO heterostructure nanocatalysts were prepared using a sol-gel method for photocatalysis to evaluate the degradability. The photocatalytic behavior was evaluated by the degradation of methylene blue (MB) under ultraviolet (UV) light irradiation. Photocatalytic studies suggested that 1 mol% Ag-doped TiO2/ZnO (TiO2/ZnO = 0.75/0.25) heterostructure nanocatalysts showed higher photocatalytic activity, and that the degradation efficiency can reach 83% in 4 h, 14% higher than that for pure TiO2. Finally, the photocatalysis mechanism for the Ag-doped TiO2/ZnO heterostructure nanocatalysts is discussed.  相似文献   

11.
In this study, ZnCr layered double hydroxide (LDH), ZnCr LDH/carbon nanotube (CNT), and ZnCr LDH/Biochar (BC) were synthesized and characterized by various analyses. The successful synthesis and the great crystallinity of the samples were consented by XRD analysis. SEM and TEM were applied to study the morphology of the synthesized samples. The simultaneous presence of C, Zn, and Cr elements was well confirmed by EDX and dot mapping analyses demonstrating the successful preparation of nanocomposites. According to the BET analysis, ZnCr LDH nanocomposites with BC and CNT had more specific surface area compared to ZnCr LDH alone. The catalytic performances of the samples were determined for the degradation of rifampicin (RF). The degradation efficiency of the sonophotocatalytic process in the presence of 0.6 g L−1 of ZnCr LDH/BC toward 15 mg L−1 of RF under 150 W ultrasound and visible light irradiation was found to be about 100% within 40 min. The influence of the reactive species on the sonophotocatalytic process was assessed via the addition of different scavengers (para-benzoquinone (p-BQ), formic acid (FA), isopropyl alcohol (IPA)), and enhancers (hydrogen peroxide and potassium persulfate). The GC–MS analysis was carried out and eleven by-products during the RF decomposition were detected.  相似文献   

12.
《Ultrasonics sonochemistry》2014,21(3):1035-1043
Diclofenac sodium, a widely detected pharmaceutical drug in wastewater samples, has been selected as a model pollutant for degradation using novel combined approach of hydrodynamic cavitation and heterogeneous photocatalysis. A slit venturi has been used as cavitating device in the hydrodynamic cavitation reactor. The effect of various operating parameters such as inlet fluid pressure (2–4 bar) and initial pH of the solution (4–7.5) on the extent of degradation have been studied. The maximum extent of degradation of diclofenac sodium was obtained at inlet fluid pressure of 3 bar and initial pH as 4 using hydrodynamic cavitation alone. The loadings of TiO2 and H2O2 have been optimised to maximise the extent of degradation of diclofenac sodium. Kinetic study revealed that the degradation of diclofenac sodium fitted first order kinetics over the selected range of operating protocols. It has been observed that combination of hydrodynamic cavitation with UV, UV/TiO2 and UV/TiO2/H2O2 results in enhanced extents of degradation as compared to the individual schemes. The maximum extent of degradation as 95% with 76% reduction in TOC has been observed using hydrodynamic cavitation in conjunction with UV/TiO2/H2O2 under the optimised operating conditions. The diclofenac sodium degradation byproducts have been identified using LC/MS analysis.  相似文献   

13.
MgTi2O5 (magnesium dititanate) nanoparticles were prepared by a simple hydrothermal assisted post-annealing method and characterized with various analytical techniques. The catalytic properties (sonocatalytic, photocatalytic and sonophotocatalytic activity) were evaluated using the degradation of triphenylmethane dyes (crystal violet, basic fuchsin, and acid fuchsin). The sonophotocatalytic activity of MgTi2O5 nanoparticles towards crystal violet was found to be ~2.9 times higher than the photocatalytic activity and ~20 times higher than that of the sonocatalytic processes. In addition, the sonophotocatalytic efficiency of MgTi2O5 nanoparticles was found to be remarkable for the degradation of basic fuchsin (cationic dye) and acid fuchsin (anionic dye). The mechanism of these catalytic activities has been discussed in detail.  相似文献   

14.
The synthesis of ZnO photocatalysts by ultrasound-assisted technique was here investigated. Several experimental parameters including the zinc precursor (acetate, chloride, nitrate), sonication conditions (amplitude, pulse) and post-synthetic thermal treatment (up to 500 °C) were studied. Crystalline ZnO samples were obtained without thermal treatments due to the adopted reactant ratios and synthesis temperature. Sonication plays a major role on the morphological oxide features in terms of particle size and surface area, the latter showing a 20-fold increase with respect to conventional synthesis. Interestingly, 1 and 3 s sonication pulses led to morphological properties similar to continuous sonication. A thermal treatment at moderate temperatures (400–450 °C) promoted the loss of surface hydroxylation and the formation of lattice defects, while higher temperatures were detrimental for the sample morphology. The prepared ZnO was decorated with WO3 particles comparing an ultrasound-assisted technique using 1 s pulses with a conventional approach, giving rise to composites with promoted visible light absorption. Samples were tested towards the photocatalytic degradation of nitrogen oxides (500–1000 ppb) in humidified air under both UV and visible light. By carefully controlling the synthetic procedure, better performance were observed with respect to the commercial benchmark. Samples from ultrasound-assisted syntheses, also in the case of pulsed sonication, showed consistently better results than conventional references, in particular for ZnO-WO3 composites. The composite by ultrasound-assisted synthesis showed > 95% degradation in 180 min and doubled NOx degradation under visible light with respect to the conventional composite.  相似文献   

15.
《Ultrasonics sonochemistry》2014,21(5):1797-1804
The present work deals with degradation of aqueous solution of Rhodamine 6G (Rh 6G) using sonocatalytic and sonophotocatalytic treatment schemes based on the use of cupric oxide (CuO) and titanium dioxide (TiO2) as the solid catalysts. Experiments have been carried out at the operating capacity of 2 L and constant initial pH of 12.5. The effect of catalyst loading on the sonochemical degradation has been investigated by varying the loading over the range of 1.5–4.5 g/L. It has been observed that the maximum degradation of 52.2% was obtained at an optimum concentration of CuO as 1.5 g/L whereas for TiO2 maximum degradation was observed as 51.2% at a loading of 4 g/L over similar treatment period. Studies with presence of radical scavengers such as methanol (CH3OH) and n-butanol (C4H9OH) indicated lower extents of degradation confirming the dominance of radical mechanism. The combined approach of ultrasound, solid catalyst and scavengers has also been investigated at optimum loadings to simulate real conditions. The optimal solid loading was used for studies involving oxidation using UV irradiations where 26.4% and 28.9% of degradation was achieved at optimal loading of CuO and TiO2, respectively. Studies using combination of UV and US irradiations have also been carried out using the optimal concentration of the catalysts. It has been observed that maximum degradation of 63.3% is achieved using combined US and UV with TiO2 (4 g/L) as the photocatalyst. Overall it can be said that the combined processes give higher extent of degradation as compared to the individual processes based on US or UV irradiations.  相似文献   

16.
No study was found in the literature on the catalytic effect of TiO2/GAC (Granular activated carbon), ZnO/GAC, and TiO2–ZnO/GAC combined with non-thermal plasma (NTP) for the decomposition of chlorinated volatile organic compounds (CVOCs) in gas streams. In the present study, this catalytic NTP process was investigated to examine the effect of specific input energy (SIE), initial concentration, as well as residence time on the removal efficiency (RE) of CVOCs in a corona discharge reactor energized by a high frequency pulsed power supply. A dip-coating sol–gel impregnation technique was used to coat TiO2, ZnO, and mixture of TiO2–ZnO nanoparticles on GAC, which were then combined with NTP in a two-stage configuration. The results revealed that the efficacy of the catalysts was in the order TiO2–ZnO/GAC ≅ TiO2/GAC > ZnO/GAC with chloroform feeding, while when chlorobenzene introduced, the order changed to TiO2–ZnO/GAC > ZnO/GAC > TiO2/GAC. A significant enhancement was observed with RE as catalysts coupled with NTP in all cases and a RE of 100% was achieved in the presence of both TiO2/GAC and TiO2–ZnO/GAC at SIE of ca. 400 J L−1. Considerable improvement was also noticed for coupling TiO2 and ZnO in both efficiency and catalyst life time.  相似文献   

17.
In this paper, KNbO3/ZnO nanocomposite was synthesized and used in piezo/photocatalytic degradation of methyl orange (MO) under simulated sunlight and ultrasonic vibration. Under simulated solar light, the optimal KNbO3/ZnO sample presented a MO degradation rate of 0.047 min−1, which is 2.47 times higher than that of ZnO. The promotion effect of KNbO3 on ZnO was also observed in the piezoelectric catalytic reaction. In addition, the co-utilization of solar and mechanical energy can further increase the MO degradation rate. Piezoelectric property and photoresponse capability are the origins of the piezo/photo catalytic behavior of the KNbO3/ZnO composite. Owing to the different band potentials of KNbO3 and ZnO, the electric potential field at their interface can drive the second distribution of the photo/piezoinduced charge carriers and hence promote the photo/piezocatalytic activity. This phenomenon was verified by the analysis on transient photocurrent and piezocurrent response. Trapping experiments on reactive species were also conducted. Superoxide radicals, holes, and hydroxyl radicals were found to be the main reactive species during the photo/piezocatalytic reaction. Recycling test showed that the KNbO3/ZnO composite exhibited good catalytic stability during six consecutive uses. Given its advantages of good catalytic activity and stability, the synthesized KNbO3/ZnO nanocomposite material has great potential in the further use of solar and mechanical energy to develop new water purification technologies.  相似文献   

18.
We report an accurate study on sonocatalytic properties of different ZnO micro and nanoparticles to enhance OH radical production activated by cavitation. In order to investigate some of the still unsolved aspects related to the piezocatalytic effect, the degradation of Methylene Blue and quantification of radicals production have been evaluated as function of different ultrasonic frequencies (20 kHz and 858 kHz) and dissolved gases (Ar, N2 and air). The results shown that at low frequency the catalytic effect of ZnO particles is well evident and influenced by particle dimension while at high frequency a reduction of the degradation efficiency have been observed using larger particles. An increase of radical production have been observed for all ZnO particles tested while the different saturating gases have poor influence. In both ultrasonic set-up the ZnO nanoparticles resulted the most efficient on MB degradation revealing that the enhanced radical production may arise more from bubbles collapse on particles surface than the discharge mechanism activate by mechanical stress on piezoelectric particles. An interpretation of these effects and a possible mechanism which rules the sonocatalytic activity of ZnO will be proposed and discussed.  相似文献   

19.
FeCeOx has been successfully synthesized by ultrasonic impregnation method and applied in diclofenac removal in heterogeneous Fenton process. The effects of ultrasonic density, impregnation time, mole ratio of Fe and Ce and calcination temperature were investigated. Nitrogen adsorption/desorption, SEM, XRD, HRTEM, Raman and XPS analyses were characterized. Stability and reusability of FeCeOx were evaluated. The results indicated that 83% degradation efficiency of diclofenac was achieved by FeCeOx under the optimum preparation conditions. Fe ions were distributed uniformly in crystal structure and the solid solution structure of FeCeOx with a lattice constriction was formed. Exposed crystalline plane (2 0 0) with a relatively high surface energy may be the main reason to provide high catalytic activity of FeCeOx. Oxygen vacancies took part in catalytic process and a portion of them were oxidized after reaction. FeCeOx showed an excellent chemical stability and reusability in heterogeneous Fenton process.  相似文献   

20.
The degradation of Acid Blue 92 (AB92) solution was investigated using a sonocatalytic process with pure and neodymium (Nd)-doped ZnO nanoparticles. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The 1% Nd-doped ZnO nanoparticles demonstrated the highest sonocatalytic activity for the treatment of AB92 (10 mg/L) with a degradation efficiency (DE%) of 86.20% compared to pure ZnO (62.92%) and sonication (45.73%) after 150 min. The results reveal that the sonocatalytic degradation followed pseudo-first order kinetics. An empirical kinetic model was developed using nonlinear regression analysis to estimate the pseudo-first-order rate constant (kapp) as a function of the operational parameters, including the initial dye concentration (5–25 mg/L), doped-catalyst dosage (0.25–1 g/L), ultrasonic power (150–400 W), and dopant content (1–6% mol). The results from the kinetic model were consistent with the experimental results (R2 = 0.990). Moreover, DE% increases with addition of potassium periodate, peroxydisulfate, and hydrogen peroxide as radical enhancers by generating more free radicals. However, the addition of chloride, carbonate, sulfate, and t-butanol as radical scavengers declines DE%. Suitable reusability of the doped sonocatalyst was proven for several consecutive runs. Some of the produced intermediates were also detected by GC–MS analysis. The phytotoxicity test using Lemna minor (L. minor) plant confirmed the considerable toxicity removal of the AB92 solution after treatment process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号