首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
通过引入渐变Al组分和脊型波导的设计,制备了1550 nm高功率AlGaInAs/InP基横模半导体激光器,室温连续工作模式下器件的斜率效率达到0.35 mW/mA,在500 mA的工作电流下,输出功率为138 mW,垂直和水平方向的远场发散角分别为32.9°和11.1°,证明器件具有良好的基横模输出特性。同时,建立高阶模截止条件温度模型,研究了器件在不同温度下功率-电流(P-I)曲线中kink效应与远场发散角steering效应的产生原因,阐述了温度对基横模和高阶模增益的影响机制。通过比较不同腔长器件发生kink效应的电流大小,证明长腔长结构可以有效防止kink效应的发生。  相似文献   

2.
设计并制备了基于双边非1/4波长布拉格反射波导的边发射半导体激光器,中心腔采用低折射率材料,在垂直方向利用布拉格反射进行光限制,实现了超大光斑尺寸且稳定单横模工作。10μm条宽、未镀膜的脊型激光器在准连续和连续工作方式下的总的输出功率分别超过了170 mW和80 mW,且最高功率受热扰动限制。激光器远场图案在垂直方向为双瓣状,单瓣垂直方向和水平方向发散角分别低至7.85°和6.7°。激射谱半高全宽仅为0.052 nm,光谱包络存在周期性调制现象,模式间隔约为3.3 nm。电流增加到300 mA以上时,激光器出现模式跳变。  相似文献   

3.
高亮度布拉格反射波导激光器   总被引:1,自引:0,他引:1  
设计并制备了808 nm波长布拉格反射波导激光器,在垂直方向采用光子带隙效应进行光场限制,实现了超大光模式体积和单横模激射。所制备的10μm条宽、未镀腔面膜的器件在室温、准连续条件下的总输出功率可超过650 mW,最高功率受热扰动限制。激光器垂直方向和水平方向的远场发散角半高全宽分别为8.3°和8.1°,这种近圆形的光束输出可以有效地提高激光器的耦合效率。  相似文献   

4.
基于分离的非对称大光腔结构,对激射波长为905nm的外延叠层三有源区大功率脉冲半导体激光器的外延结构进行优化设计。通过优化近场光场模式、自由载流子吸收损耗、相邻发光区之间距离以及掺杂浓度分布等关键参数,提高了器件的脉冲峰值功率,降低了内损耗和远场垂直发散角。研制的1mm腔长、100μm条宽的三有源区大功率半导体激光器,经由150ns脉宽和6.67kHz重复频率的脉冲测试,在34.5A脉冲电流强度驱动下实现了122W的脉冲峰值功率输出。器件的斜率效率为3.54 W/A,单个发光区实现了折合91.75%的内量子效率和2.05cm-1的内损耗,水平方向和垂直方向上的半峰全宽远场发散角分别为7.8°和27.6°。  相似文献   

5.
小发散角垂直腔面发射激光器的设计与制作   总被引:6,自引:4,他引:2       下载免费PDF全文
针对垂直腔面发射激光器单管及列阵器件较大的远场发散角,对大直径单管器件及列阵单元器件的有源区中的电流密度分布进行了模拟计算,分析了器件高阶横模产生的原因.分别采用优化p面电极直径和镀制额外金层结构来抑制单管及列阵器件远场光斑中的高阶边模,所制作的氧化孔径为600 μm的单管器件的远场发散角半角宽度从30°降低到15°;...  相似文献   

6.
为了提高980nm半导体激光器的输出功率并获得较小的远场发散角,在非对称波导结构的基础上设计了n型波导结构,即在n型波导中引入高折射率的内波导层。采用理论计算和SimLastip软件模拟对常规非对称波导结构和内波导结构进行了研究。利用分子束外延系统生长980nm内波导结构的外延材料,并制作了激光器。对于条宽为100μm、腔长为1000μm的器件,阈值电流为97mA,斜率效率为1.01W/A;当注入电流为500mA时,远场发散角为29°(垂直向)×8°(水平向),与模拟结果相符。理论计算和实验结果表明:较之于常规非对称波导结构,内波导结构可有效降低光场限制因子,提高输出功率,减小远场发散角。  相似文献   

7.
大光腔小垂直发散角InGaAs/GaAs/AlGaAs半导体激光器   总被引:3,自引:0,他引:3       下载免费PDF全文
提出并实现了新型隧道再生耦合大光腔半导体激光器,近场光斑宽度达到1μm,较普通半导体激光器提高了一个数量级,有效地解决了普通半导体激光器由于发光面积狭窄而导致的端面灾变性毁坏和垂直发散角大的问题. 采用低压金属有机物化学气相沉积方法生长了以C和Si分别作为掺杂剂的AlGaAs隧道结、GaAs/InGaAs应变量子阱有源区和新型半导体激光器外延结构,并制备出器件,其垂直发散角为20°,阈值电流密度为277A/cm2,斜率效率在未镀膜时达到0.80W/A. 关键词: 半导体激光器 大光腔 隧道再生  相似文献   

8.
采用反射型体布拉格光栅作为反馈元件构成红光外腔半导体激光器,对器件输出光特性进行了实验研究。重点研究了体布拉格光栅的位置对红光外腔半导体激光器远场特性的影响。实验结果表明,减小体布拉格光栅与激光器芯片之间的距离可提高激光器的锁模效果,窄化光谱,并且改善慢轴方向的光束发散角。使用衍射效率为20%的体布拉格光栅,可将半导体激光器的输出波长稳定锁定在634 nm附近,光谱线宽压缩至0.7 nm左右,输出功率可达1.06 W。  相似文献   

9.
《发光学报》2021,42(4)
为提高大功率半导体激光器的泵浦效率,必须降低半导体激光器输出波长随温度的漂移系数。采用MOCVD外延技术、纳米压印和干法刻蚀附加湿法腐蚀等工艺制备了大功率分布反馈激光器列阵。激光器列阵的腔长为1 mm, 25℃时中心波长为808 nm,通过测试不同热沉温度下的P-V-I曲线和光谱图,表明当脉冲工作电流为148 A时,激光器列阵的输出功率可以达到100 W,斜率效率为0.9 W/A,光谱的FWHM为0.5 nm,边模抑制比可以达到40 dB,出射波长随温度的漂移系数为0.056 nm/℃,单列阵波长锁定范围可达50℃,总锁定范围100℃。另外还分析了腔面镀膜对波长锁定效果的影响。  相似文献   

10.
高功率InGaAs量子阱垂直腔面发射激光器的研制   总被引:1,自引:1,他引:0  
采用AlAs氧化物限制工艺实验制备了衬底出光的高功率大出光窗口(直径为300 μm)InGaAs/GaAs量子阱垂直腔面发射半导体激光器,实现了器件室温准连续工作(脉冲宽度为50 μs,重复频率为1000 Hz),并对器件的伏安特性、光输出特性、发射光谱,以及器件的远场发射特性等进行了实验测试.器件阈值电流为460mA,器件的最大光输出功率为100mW,发射波长为978.6nm, 光谱半功率全宽度为1.0 nm,远场发散角小于10°,垂直方向的发散角θ为8°,水平方向的发散角θ为9°,基本为圆形对称光束.  相似文献   

11.
设计出了隧道结串联叠层半导体激光器结构,采用分子束外延进行激光器材料的外延生长,材料经过光刻、腐蚀、欧姆接触、解理、腔面镀高反射/减反射膜、焊装等工艺,制作成条宽200 m、腔长800 m 的半导体激光器。两隧道结激光器在脉冲宽度100 ns,重复频率10 kHz,30 A工作电流下输出功率达到80 W,峰值发射波长为905.6 nm,器件的阈值电流为0.8 A,水平和垂直方向的发散角分别为7.8和25。  相似文献   

12.
针对双波长激光器间距精细调谐的需求,基于正方形微腔的模场分布,设计了中心及四个角区电流注入窗口的正方形微腔激光器。利用有限元法对提出的结构进行分析,发现改变腔体折射率分布差,可以调控基横模和一阶横模的波长间距。基于半导体平面加工工艺成功制备了边长为30μm的非均匀注入正方形微腔激光器。当注入电流从42 mA增加到53 mA时,该激光器的波长间隔从0.18 nm减小到0.1 nm,强度比小于4 dB。除此之外,继续增加电流,由于双模间隔的进一步减小,出现了明显的单周期振荡现象。  相似文献   

13.
针对双波长激光器间距精细调谐的需求,基于正方形微腔的模场分布,设计了中心及四个角区电流注入窗口的正方形微腔激光器.利用有限元法对提出的结构进行分析,发现改变腔体折射率分布差,可以调控基横模和一阶横模的波长间距.基于半导体平面加工工艺成功制备了边长为30μm的非均匀注入正方形微腔激光器.当注入电流从42 mA增加到53 ...  相似文献   

14.
为了提高2μm InGaAsSb/AlGaAsSb半导体激光器的最大输出功率,减小远场垂直发散角并实现单模稳定输出,在非对称波导结构的基础上设计了具有双波导结构的2μm InGaAsSb/AlGaAsSb半导体激光器.同时,利用相关的物理模型及SimLastip程序语言构建了InGaAsSb/AlGaAsSb Macro文件,利用SimLastip软件对具有不同结构的2μm InGaAsSb/AlGaAsSb半导体激光器进行了数值模拟分析.研究结果表明,双波导结构可以将半导体激光器的有源区限制因子由0.019 2减小至0.011 3,器件的最大输出功率提高了1.7倍,远场垂直发散角由57°减小到48°,器件性能得到了改善.  相似文献   

15.
采用激射波长为850 nm的AlGaInAs/AlGaAs梯度折射率波导分别限制增益量子阱结构的外延片,分别制备了具有锥形结构和条形结构的半导体激光器,并对比分析了两者的温度特性。结果显示,测试温度为20~70℃时,锥形结构器件的特征温度为164 K,远高于条形结构器件的96 K;占空比为0.5%(t=50μs,f=100 Hz),1 000 mA脉冲电流注入条件下,锥形激光器和条形激光器的波长漂移系数分别为0.25和0.28 nm/K;测试温度〈50℃时,锥形激光器和条形激光器的光谱半高宽分别约为1.12和1.24 nm。实验结果表明:相同外延层结构条件下,锥形激光器比条形激光器拥有更高的特征温度。  相似文献   

16.
为改善940 nm大功率InGaAs/GaAs半导体激光器输出特性,通过模拟计算了非对称波导层及限制层结构的光场分布,并参照模拟制作了非对称结构半导体激光器器件。采用低压金属有机物气相沉积(LP-MOCVD)生长技术,获得了低内吸收系数的高质量外延材料,通过实验数据计算得到激光器材料内吸收系数仅为0.44mm~(-1)。进而通过管芯工艺制作了条宽100μm、腔长2000μm的940 nm半导体激光器器件。25℃室温10 A直流连续(CW)测试镀膜后器件阈值电流251 mA,斜率效率1.22 W/A,最大输出功率达到9.6 W,最大光电转化效率超过70%。  相似文献   

17.
2μm GaSb基低垂直发散角布拉格反射波导激光器优化设计   总被引:1,自引:1,他引:0  
为实现2 μm低发散角激光,提出在GaSb基半导体激光器中引入布拉格反射波导,利用光子带隙效应替代传统的全反射进行光场限制。研究了分布反馈反射镜(DBR)的厚度、对数、高低折射率DBR厚度比以及中心腔厚度等参数对激光器垂直远场发散角和光限制因子的影响。结果表明:垂直远场发散角随单对DBR厚度的增加而减小;光限制因子与远场发散角都随拉格反射镜对数的增加而减小,随高低折射率DBR厚度比的减小而增大;随着中心层厚度的增大,光限制因子减小而远场发散角增大。最终在理论上优化设计出了一种双边布拉格反射波导结构的超低垂直发散角2 μm GaSb基边发射半导体激光器,其垂直远场发散角可降低到10°以下。  相似文献   

18.
为提高1060 nm锥形激光器的输出性能,对1060 nm锥形激光器的脊形波导区和锥形增益区长度进行了优化。当保持总腔长3 mm不变时,设置脊形波导区长度为500,750,1000μm。在输出功率为2 W时,对三种情况所需的输入电流、功率-电流曲线斜率效率、电光转换效率、输出光谱及远场特性进行了对比。研究结果表明,当脊形波导区长度为750μm,锥形增益区长度为2250μm时,1060 nm锥形激光器的输出性能最优。当输出功率为2 W时,所需输入电流为3.95 A,斜率效率为0.61 W/A,转换效率为33.9%,光谱宽度(半峰全宽)为0.3 nm,远场近似高斯分布且95%能量处的水平发散角约为14°。  相似文献   

19.
为降低半导体激光芯片的慢轴远场发散角,提高其慢轴方向的光束质量,设计了横向热流抑制的封装结构。利用热沉间的物理隔离,削弱了半导体激光芯片慢轴方向上的温度梯度,有效降低了半导体激光芯片慢轴方向的发散角。采用热分析模拟了不同封装结构下芯片发光区的温度分布,并对波长915 nm的窄条宽半导体激光芯片进行封装。实验结果表明,在工作电流15 A,封装在隔离槽长4 mm,脊宽120 μm刻槽热沉上的芯片,其慢轴远场发散角由12.25°降低至10.49°,相应的光参量积(BPP)由5.344 mm·mrad 降低至4.5763 mm·mrad,慢轴方向亮度提升了约5.5%。实验结果表明,横向热流抑制的封装结构可以有效地削弱半导体激光芯片慢轴方向上由热透镜效应引起的高阶模激射,从而降低其慢轴远场发散角。  相似文献   

20.
利用MOCVD生长了14xxnm AlGaInAs/AlInAs/InP应变量子阱外延片.采用带有锥形增益区脊型波导结构和普通条形脊型波导结构在相同的实验条件下制作800 μm腔长激光器管芯,在相同的驱动电流下前者可以获得更高的输出光功率,而且P-Ⅰ曲线线性度较好、饱和电流高. 1200 μm腔长带有锥形增益区脊型波导结构管芯功率达到500 mW,饱和电流3 A以上,峰值波长1460 nm,远场发散角为39°×11°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号