首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Highly charged ions (HCIs) have huge potential energy due to their high charge state. When a HCI reaches a solid surface, its potential energy is released immediately on the surface to cause a nano-scale defect. Thus, HCIs are expected to be useful for solid-surface modifications on the nano-scale. We investigate the defects on a highly oriented pyrolytic graphite (HOPG) surface induced by slow highly charged Ar^q+ ions with impact energy of 20-2000qeV with scanning probe microscopy (SPM). In order to clarify the role of kinetic and potential energies in surface modification, the nano-defects are characterized in lateral size and height corresponding to the kinetic energy and charge state of the HCIs. Both the potential energy and kinetic energy of the ions may influence the size of nano-defect. Since potential energy increases dramatically with increasing charge state, the potential energy effect is expected to be much larger than the kinetic energy effect in the case of extremely high charge states. This implies that pure surface modification on the nano-scale could be carried out by slow highly charged ions. The mean size of nano-defect region could also be controlled by selecting the charge state and kinetic energy of HCI.  相似文献   

2.
<正>Sodium beta-alumina(SBA) is deposited on AlGaN/GaN by using a co-deposition process with sodium and Al2O3 as the precursors.The X-ray diffraction(XRD) spectrum reveals that the deposited thin film is amorphous.The binding energy and composition of the deposited thin film,obtained from the X-ray photoelectron spectroscopy(XPS) measurement,are consistent with those of SBA.The dielectric constant of the SBA thin film is about 50.Each of the capacitance-voltage characteristics obtained at five different frequencies shows a high-quality interface between SBA and AlGaN.The interface trap density of metal-insulator-semiconductor high-electron-mobility transistor(MISHEMT) is measured to be(3.5~9.5)×1010 cm-2·eV-1 by the conductance method.The fixed charge density of SBA dielectric is on the order of 2.7×1012 cm-2.Compared with the AlGaN/GaN metal-semiconductor heterostructure high-electronmobility transistor(MESHEMT),the AlGaN/GaN MISHEMT usually has a threshold voltage that shifts negatively. However,the threshold voltage of the AlGaN/GaN MISHEMT using SBA as the gate dielectric shifts positively from—5.5 V to—3.5 V.From XPS results,the surface valence-band maximum(VBM-EF) of AlGaN is found to decrease from 2.56 eV to 2.25 eV after the SBA thin film deposition.The possible reasons why the threshold voltage of AlGaN/GaN MISHEMT with the SBA gate dielectric shifts positively are the influence of SBA on surface valence-band maximum (VBM-EF),the reduction of interface traps and the effects of sodium ions,and/or the fixed charges in SBA on the two-dimensional electron gas(2DEG).  相似文献   

3.
1 Introduction It has been found that a large number of ions and atoms can be sputtered; and elec-trons and X-ray can be emitted in the impact of slow highly charged ions (SHCI) onmetal surfaces. It has also been shown that a slow highly charged ion can deposit anamount of potential energy ranging from tens to hundreds of keV within a nanometer-sized volume on femtosecond time scale during impinging on a solid surface. Theequivalent power density is about 1014 W/cm2 and bombardment craters …  相似文献   

4.
Long-range alpha detectors (LRADs) are attracting much attention in the decommissioning of nuclear facilities because of some problems in obtaining source positions on an interior surface during pipe decommissioning. By utilizing the characteristic that LRAD detects alphas by collecting air-driving ions, this article applies a method to localize the radioactive source by ions’ fluid property. By obtaining the ion travel time and the airspeed distribution in the pipe, the source position can be determined. Thus this method overcomes the ion’s lack of periodic characteristics. Experimental results indicate that this method can approximately localize the source inside the pipe. The calculation results are in good agreement with the experimental results.  相似文献   

5.
蓝鼎  王育人  于泳  马文杰  李程 《中国物理》2007,16(2):468-471
A new approach is developed to the fabrication of high-quality three-dimensional macro-porous copper films. A highly-ordered macroporous copper film is successfully produced on a polystyrene sphere (PS) template that has been modified by sodium dodecyl sulfate (SDS). It is shown that this procedure can change a hydrophobic surface of PS template into a hydrophilic surface. The present study is devoted to the influence of the electrolyte solution transport on the nucleation process. It is demonstrated that the permeability of the electrolyte solution in the nanochannels of the PS template plays an important role in the chemical electrodeposition of high-quality macroporous copper film. The permeability is drastically enhanced in our experiment through the surface modification of the PS templates. The method could be used to homogeneously produce a large number of nucleations on a substrate, which is a key factor for the fabrication of the high-quality macroporous copper film.  相似文献   

6.
邓金祥  秦扬  孔乐  杨学良  李廷  赵卫平  杨萍 《中国物理 B》2012,21(4):47202-047202
Cubic boron nitride (c-BN) thin films are deposited on p-type Si wafers using radio frequency (RF) sputtering and then doped by implanting S ions. The implantation energy of the ions is 19 keV, and the implantation dose is between 10 15 ions/cm 2 and 10 16 ions/cm 2 . The doped c-BN thin films are then annealed at a temperature between 400°C and 800 C. The results show that the surface resistivity of doped and annealed c-BN thin films is lowered by two to three orders, and the activation energy of c-BN thin films is 0.18 eV.  相似文献   

7.
邹雪晴  薛建明  王宇钢 《中国物理 B》2010,19(3):36102-036102
Physical and chemical phenomena of low-energy ion irradiation on solid surfaces have been studied systematically for many years, due to the wide applications in surface modification, ion implantation and thin-film growth. Recently the bombardment of nano-scale materials with low-energy ions gained much attention. Comared to bulk materials, nano-scale materials show different physical and chemical properties. In this article, we employed molecular dynamics simulations to study the damage caused by low-energy ion irradiation on copper nanowires. By simulating the ion bombardment of 5 different incident energies, namely, 1~keV, 2~keV, 3~keV, 4~keV and 5~keV, we found that the sputtering yield of the incident ion is linearly proportional to the energies of incident ions. Low-energy impacts mainly induce surface damage to the nanowires, and only a few bulk defects were observed. Surface vacancies and adatoms accumulated to form defect clusters on the surface, and their distribution are related to the type of crystal plane, e.g. surface vacancies prefer to stay on (100) plane, while adatoms prefer (110) plane. These results reveal that the size effect will influence the interaction between low-energy ion and nanowire.  相似文献   

8.
The local coordination structures around the doping Yb 2+ ions in sodium and potassium halides were calculated by using the first-principles supercell model.Both the cases with and without the charge compensation vacancy in the local environment of the doping Yb 2+ were calculated to study the effect of the doping on the local coordination structures of Yb 2+.Using the calculated local structures,we obtained the crystal-field parameters for the Yb 2+ ions doped in sodium and potassium halides by a method based on the combination of the quantum-chemical calculations and the effective Hamiltonian method.The calculated crystal-field parameters were analyzed and compared with the fitted results.  相似文献   

9.
Choosing suitable solvent is the key technology for the electrochemical performance of energy storage device.Among them,vinylene carbonate(VC),fluoroethylene carbonate(FEC),and ethylene sulfite(ES)are the potential organic electrolyte solvents for lithium/sodium battery.However,the quantitative relation and the specific mechanism of these solvents are currently unclear.In this work,density functional theory(DFT)method is employed to study the lithium/sodium ion solvation in solvents of VC,ES,and FEC.We first find that 4VC-Li+,4VC-Na+,4ES-Li+,4ES-Na+,4FEC-Li+,and 4FEC-Na+are the maximum thermodynamic stable solvation complexes.Besides,it is indicated that the innermost solvation shells are consisted of 5VC-Li+/Na+,5ES-Li+/Na+,and 5FEC-Li+/Na+.It is also indicated that the Li+solvation complexes are more stable than Na+complexes.Moreover,infrared and Raman spectrum analysis indicates that the stretching vibration of O=C peak evidently shifts to high frequency with the Li+/Na+concentration reducing in nVC-Li+/Na+and nFEC-Li+/Na+solvation complexes,and the O=C vibration peak frequency in Na+solvation complexes is higher than that of Li+complexes.The S=O stretching vibration in nES-Li+/Na+solvation complexes moves to high frequency with the decrease of the Li+/Na+concentration,the S=O vibration in nES-Na+is higher than that in nES-Li+.The study is meaningful for the design of new-type Li/Na battery electrolytes.  相似文献   

10.
刘铁路  王云良  路彦珍 《中国物理 B》2015,24(2):25202-025202
The nonlinear propagation of quantum ion acoustic wave(QIAW) is investigated in a four-component plasma composed of warm classical positive ions and negative ions,as well as inertialess relativistically degenerate electrons and positrons.A nonlinear Schrodinger equation is derived by using the reductive perturbation method,which governs the dynamics of QIAW packets.The modulation instability analysis of QIAWs is considered based on the typical parameters of the white dwarf.The results exhibit that both in the weakly relativistic limit and in the ultrarelativistic limit,the modulational instability regions are sensitively dependent on the ratios of temperature and number density of negative ions to those of positive ions respectively,and on the relativistically degenerate effect as well.  相似文献   

11.
<正>Ion pickup by a monochromatic low-frequency Alfven wave,which propagates along the background magnetic field,has recently been investigated in a low beta plasma(Lu and Li 2007 Phys.Plasmas 14 042303).In this paper, the monochromatic Alfven wave is generalized to a spectrum of Alfven waves with random phase.It finds that the process of ion pickup can be divided into two stages.First,ions are picked up in the transverse direction,and then phase difference(randomization) between ions due to their different parallel thermal motions leads to heating of the ions.The heating is dominant in the direction perpendicular to the background magnetic field.The temperatures of the ions at the asymptotic stage do not depend on individual waves in the spectrum,but are determined by the total amplitude of the waves.The effect of the initial ion bulk flow in the parallel direction on the heating is also considered in this paper.  相似文献   

12.
刘天启  王德华  韩才  刘江  梁东起  解思成 《中国物理 B》2012,21(4):43401-043401
Based on closed-orbit theory, the photodetachment of H in a gradient electric field near a metal surface is studied. It is demonstrated that the gradient electric field has a significant influence on the photodetachment of negative ions near a metal surface. With the increase of the gradient of the electric field, the oscillation in the photodetachment cross section becomes strengthened. Besides, in contrast to the photodetachment of H near a metal surface in a uniform electric field, the oscillating amplitude and the oscillating region in the cross section of a gradient electric field also become enlarged. Therefore, we can use the gradient electric field to control the photodetachment of negative ions near a metal surface. We hope that our results will be useful for understanding the photodetachment of negative ions in the vicinity of surfaces, cavities, and ion traps.  相似文献   

13.
We report the combined effects of laser polarization and curvature of the spherical surface on the detached electron spectra from H-.The Theoretical imaging method is used as a tool of investigation.The photodetachment cross sections for various polarization angles,radii of curvatures and inter ion surface distances are displayed.The analysis of the spectra reveals that the laser polarization angle θL,curvature of the surface rc and inter ion surface distance d strongly affect oscillations in the spectra.Therefore,a fine control on the laser polarization and that of curvature in the surface can be used to control oscillations in the photodetachment of negative ions.  相似文献   

14.
Carbon nanotubes(CNTs) have long been expected to be excellent nanochannels for use in desalination membranes and other bio-inspired human-made channels owing to their experimentally confirmed ultrafast water flow and theoretically predicted ion rejection. The correct classical force field potential for the interactions between cations and CNTs plays a crucial role in understanding the transport behaviors of ions near and inside the CNT, which is key to these expectations. Here,using density functional theory calculations, we provide classical force field potentials for the interactions of Na+/hydrated Na+with(7,7),(8,8),(9,9), and(10,10)-type CNTs. These potentials can be directly used in current popular classical software such as nanoscale molecular dynamics(NAMD) by employing the tcl BC interface. By incorporating the potential of hydrated cation-π interactions to classical all-atom force fields, we show that the ions will move inside the CNT and accumulate, which will block the water flow in wide CNTs. This blockage of water flow in wide CNTs is consistent with recent experimental observations. These results will be helpful for the understanding and design of desalination membranes, new types of nanofluidic channels, nanosensors, and nanoreactors based on CNT platforms.  相似文献   

15.
何满潮  赵健 《中国物理 B》2013,22(1):16802-016802
Using first-principles methods, we have systematically investigated the electronic density of states, work function, and adsorption energy of the methane molecule adsorbed on graphite(0001) films. The surface energy and the interlayer relaxation of the clean graphite(0001) as a function of the thickness of the film were also studied. The results show that the interlayer relaxation is small due to the weak interaction between the neighboring layers. The one-fold top site is found most favourable on substrate for methane with the adsorption energy of 133 meV. For the adsorption with different adsorption heights above the graphite film with four layers, the methane is found to prefer to appear at about 3.21 A above the graphite. We also noted that the adsorption energy does not dependent much on the thickness of the graphite films. The work function is enhanced slightly by adsorption of methane due to the slight charge transfer from the graphite surface to the methane molecule.  相似文献   

16.
Hydrophobic nanochannel plays a significant role in many physical, biological, and geological phenomena and exhibits impressive applications due to both its ubiquitous distribution and great ability to transport hydrophobic molecules,including various oils and gases. Based on theoretical modeling, we herein reveal that the amphipathic Janus nanoparticles have a large probability to self-assemble into uninterrupted hydrophobic nanochannels inside the aqueous nano-space, although there are large portions of the Janus nanoparticles to be hydrophilic. The key to this observation is the attractions between the hydrophobic regimes on neighboring amphipathic Janus particles through hydrophobic interaction in aqueous nano-space. More surprisingly, the permeation efficiency of hydrophobic molecules through the uninterrupted hydrophobic channel in Janus particles aggregate is even higher than that in the aggregate of hydrophobic particles. We note that the proposed amphipathic Janus particles can be transported to the appropriate positions by the water since the hydrophilic regimes still remain a strong particle–water interaction. We also note that most natural subsurface rocks are not completely hydrophobic or hydrophilic but have complex surfaces with inhomogeneous wetting property. Our work therefore provides a detailed molecular level understanding of the formation of underground strata as well as the new insight for constructing the artificial hydrophobic channels for various applications, such as the design of proppants to enhance the recovery of the unconventional oil/gas.  相似文献   

17.
In this paper molecular dynamics simulations are performed to study the accumulation behaviour of N2 and H2 at water/graphite interface under ambient temperature and pressure. It finds that both N2 and H2 molecules can accumulate at the interface and form one of two states according to the ratio of gas molecules number to square of graphite surface from our simulation results: gas films (pancake-like) for a larger ratio and nanobubbles for a smaller ratio. In addition, we discuss the stabilities of nanobubbles at different environment temperatures. Surprisingly, it is found that the density of both kinds of gas states can be greatly increased, even comparable with that of the liquid N2 and liquid H2. The present results are expected to be helpful for the understanding of the stable existence of gas film (pancake-like) and nanobubbles.  相似文献   

18.
The annealing behaviour of 400 keV Er ions at a fluence of 2×1015 cm-2 implanted into silicon-on-insulator(SOI) samples is investigated by Rutherford backscattering spectrometry of 2.1 MeV He2+ ions with a multiple scattering model.It is found that the damage close to the SOI surface is almost removed after being annealed in O2 and N2 atmospheres,successively,at ℃,and that only a small number of the Er atoms segregated to the surface of the SOI sample,whereas a large number of Er atoms diffused to a deeper position because of the affinity of Er for oxygen.For the SOI sample co-implanted with Er and O ions,there is no evident outdiffusion of Er atoms to the SOI surface after being annealed in N2 atmosphere at ℃.  相似文献   

19.
20.
We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号