首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The quasi-ferrite model is proposed and an appropriate PBE exchange functional with the spin density functional theory(SDFT) is selected for the calculation of the relation between magnetic moment and residual stress in ferrite using a quantum mechanics code. The relationship between ferrite magnetism and the carbon content is determined,and then a ferrite interstitial solid solution(ISS) model in a low carbon concentration state is replaced with an α- Fe model in the case of majority magnetic calculation. The band structure of the loaded-Fe is compared with that of the unloaded α-Fe. The comparison shows that the energy of Fe atomic 3d orbital changes a little,while the energy of electron orbital of iron core below 3d almost keeps unchanged. The relationship between the magnetic moment and the stress appears intermittent due to the Bragg total reflection. The change in the magnetic moment due to lattice mismatch is much larger than that caused by mechanical loading.  相似文献   

2.
We investigate the cosmological evolution of a two-field model of dark energy, where one is a dilaton field with canonical kinetic energy and the other is a phantom field with a negative kinetic energy term. Phase-plane analysis shows that the "phantom"-dominated scaling solution is the stable late-time attractor of this type of model. We find that during the evolution of the universe, the equation of state w changes from w 〉 -1 to w 〈 -1, which is consistent with recent observations.  相似文献   

3.
A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived.The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately,especially at the relativistic region.The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model.The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons △E/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions.As a result,the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model.  相似文献   

4.
The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investigated using an established movable Langmuir probe. The results indicate that in the axial direction the electron density tends to peak at midway between the two electrodes while the axial variation trend of mean electron energy is different from that of the electron density, the mean electron energy is high near the electrodes. And the mean electron energy near the cathode is much higher than that near the anode. This article focuses on the radial distribution of electron density and mean electron energy. A proposed theoretical model distribution agrees well with the experimental one: the electron density and the mean electron energy both increase from the centre of the glow to the edge of electrodes. This is useful for better understanding the discharge mechanism and searching for a better deposition condition to improve thin film quality.  相似文献   

5.
We consider a generalized quintom (GQ) dark energy model for changing the equal weight of the negative-kinetic scalar field (phantom) and the normal scalar field (quintessence) in quintom dark energy. Though the phantomdominated scaling solution is a stable late-time attractor, the early evolution of GQ is different from that of the quintom model and the adjustability of the dark energy state equation in the model is improved.  相似文献   

6.
Dynamical Evolution of Modified Chaplygin Gas   总被引:1,自引:0,他引:1       下载免费PDF全文
Based our previous work [Mod. Phys. Lett. A 22 (2007) 783, Gen. Relat. Gray. 39 (2007) 653], some properties of modified Chaplygin gas (MCG) as a dark energy model continue to be studied mainly in two aspects: one is the change rates of the energy density and energy transfer, and the other is the evolution of the growth index. It is pointed that the density of dark energy undergoes the change from decrease to increase no matter whether the interaction between dark energy and dark matter exists or not, but the corresponding transformation points are different from each other.Eurthermore, it is stressed that the MCG model even supports the existence of interaction between dark energy and dark matter, and the energy of transfer flows from dark energy to dark matter. The evolution of the interaction term with an ansatz 3Hc^2ρ is discussed with the MCG model. Moreover, the evolution of the growth index f in the MCG model without interaction is illustrated, from which we find that the evolutionary trajectory of f overlaps with that of the ACDM model when a 〉 0.7 and its theoretical value f ≈ 0.566 given by us at z = 0.15 is consistent with the observations.  相似文献   

7.
邓永锋  韩先伟  谭畅 《中国物理 B》2009,18(9):3870-3876
A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4, a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model, the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam, but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases, i.e., with and without secondary electrons (SEs). Analysis indicates that the energy deposition of SEs accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic, but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover, both the energy distribution of BEs and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus, a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air.  相似文献   

8.
Based on the optimal velocity car-following model, in this paper, we propose an improved model for simulating train movement in an urban railway in which the regenerative energy of a train is considered. Here a new additional term is introduced into a traditional car-following model. Our aim is to analyze and discuss the dynamic characteristics of the train movement when the regenerative energy is utilized by the electric locomotive. The simulation results indicate that the improved car-following model is suitable for simulating the train movement. Further, some qualitative relationships between regenerative energy and dynamic characteristics of a train are investigated, such as the measurement data of regenerative energy presents a power-law distribution. Our results are useful for optimizing the design and plan of urban railway systems.  相似文献   

9.
10.
Monte Carlo simulations are used to study the three-dimensional Holstein model. The relationship between the band filling and the chemical potential is obtained for various phonon frequencies and temperatures. The energy of a single electron or a hole is also calculated as a function of the lattice momenta.  相似文献   

11.
This paper proposes a novel mathematical model for chemical mechanical polishing (CMP) based on interface solid physical and chemical theory in addition to energy equilibrium knowledge. And the effects of oxidation concentration and particle size on the material removal in CMP are investigated. It is shown that the mechanical energy and removal cohesive energy couple with the particle size, and being a cause of the non-linear size-removal rate relation. Furthermore, it also shows a nonlinear dependence of removal rate on removal cohesive energy. The model predictions are in good qualitative agreement with the published experimental data. The current study provides an important starting point for delineating the micro-removal mechanism in the CMP process at atomic scale.  相似文献   

12.
Kinesin is a two-headed biological molecular motor that can walk processively on microtubule via consumption of ATP molecules. The central issue for the molecular motor is how the chemical energy released from ATP hydrolysis is converted to the kinetic energy of the mechanical motion, namely the mechanism of chemomechanical coupling. To address the issue, diverse experimental methods have been employed and a lot of models have been proposed. This review focuses on the proposed models as well as the qualitative and quantitative comparisons between the results derived from the models and those from the structural, biochemical and single-molecule experimental studies.  相似文献   

13.
余洋  米增强 《物理学报》2013,62(3):38403-038403
提出了一种新的基于机械弹性的储能方法, 推导了永磁电机式机械弹性储能机组的非线性动力学模型, 论证了机组储能过程中某些参数及运行条件下会出现混沌运动, 分析了机组非线性动力学模型的线性稳定性. 在此基础上, 基于本实验室正在研发的0.16 kWh/0.8 kW机械弹性储能机组运行参数, 将机组3维非线性模型降阶为带时变参数的2维投影子系统, 采用坐标平面投影法研究了机组的混沌特性, 分析了降维子系统平衡点位置及特征方程随时变参数的变化关系, 并对机组混沌运动进行了数值验证, 在一定程度上解决了解析方法, 适用性较差导致对多维机电耦联系统只能仿真求解难以理论分析的问题.  相似文献   

14.
We have previously hypothesized that the dissipation of mechanical energy of external impact is a fundamental function of skeletal muscle in addition to its primary function to convert chemical energy into mechanical energy. In this paper, a mathematical justification of this hypothesis is presented. First, a simple mechanical model, in which the muscle is considered as a simple Hookean spring, is considered. This analysis serves as an introduction to the consideration of a biomechanical model taking into account the molecular mechanism of muscle contraction, kinetics of myosin bridges, sarcomere dynamics, and tension of muscle fibers. It is shown that a muscle behaves like a nonlinear and adaptive spring tempering the force of impact and increasing the duration of the collision. The temporal profiles of muscle reaction to the impact as functions of the levels of muscle contraction, durations of the impact front, and the time constants of myosin bridges closing, are obtained. The absorption of mechanical shock energy is achieved due to the increased viscoelasticity of the contracting skeletal muscle. Controlling the contraction level allows for the optimization of the stiffness and viscosity of the muscle necessary for the protection of the joints and bones.  相似文献   

15.
We study the Brownian dynamics of individual particles with energy depot in two dimensions and extend the model to swarms of such particles. We assume that the elements (energy depots) are provided at discrete times with packets of chemical energy which is subsequently converted into acceleration of motion. In contrast to the mechanical white noise which is incorporated in the equations of mechanical motion and has no preferred direction, the energetic noise, as discussed in this study, is directed and it does not reverse the direction of mechanical motion. We characterize the effective noise acting on the particles and show that the stochastic energy supply may be modeled as a shot-noise driven Ornstein-Uhlenbeck process in energy which finally results in fluctuations of the velocity. We study the energy and velocity distributions for different regimes and estimate the crossover time from ballistic to diffusion motion. Further we investigate the dynamics of swarms and find a transition from translational to rotational motion depending on the rate of the shot noise.  相似文献   

16.
We report on a beating polymer gel that exhibits periodical volume changes (swelling and deswelling) in a closed solution without external stimuli, like autonomous heartbeat. The mechanical oscillation is driven by the chemical energy of the oscillatory Belousov-Zhabotinsky (BZ) reaction. The gel is a copolymer gel of N-isopropylacrylamide (NIPAAm) in which ruthenium tris(2,2(')-bipyridine) [Ru(bpy)(3)], known as a catalyst of the BZ reaction, is covalently bonded to the polymer chain. The poly[NIPAAm-co-Ru(bpy)(3)] gel provides an open system where the BZ reaction proceeds, when immersed in an aqueous solution containing the reactants of the BZ reaction (with the exception of a catalyst). The chemical oscillation in the BZ reaction generates the periodical changes of the charge of Ru(bpy)(3) in the gel network between reduced [Ru(II)] and oxidized [Ru(III)] states. The gel swells at the oxidized state because the hydrophilicity of the polymer chains increases, while at the reduced state the gel deswells. Thus, the chemical energy is transduced into the mechanical energy to drive the polymer gel oscillation with a period of about 5 min, depending on the composition of the surrounding solution. The oscillation mode of the gel depends on its size scaled by the wavelength of the BZ pattern. Sufficiently small bead-like gels demonstrate isotropic beating. A large rectangular gel shows mechanical oscillation with a peristaltic motion coupled with the propagating chemical waves. The dynamic behavior of the chemical and mechanical oscillations have been analyzed with a model simulation. (c) 1999 American Institute of Physics.  相似文献   

17.
谢平  窦硕星  王鹏业 《中国物理》2005,14(4):734-743
驱动蛋白马达在实验和理论上已被进行了广泛的研究. 然而, 其行进运动的微观机理仍未确定. 在本文中我们基于化学、力学和电学耦合提出了一个交臂模型来描述这种行进运动. 在该模型中,驱动蛋白两个头的ATP水解化学反应速率由作用在其颈上的力(包括内部弹性力和外部负荷)来调控. 在低外部负荷情况下, 驱动蛋白的后头的ATP水解化学反应速率远大于前头的速率, 因而两个头在ATP水解化学反应和力学周期循环中是协调的且马达以每步消耗一个ATP的方式的行走. 在大的前向负荷情况下, 两个头的ATP水解化学反应速率变得可比拟, 因而两个头在ATP水解化学反应和力学周期循环中不再很好地协调. 该模型与驱动蛋白的结构研究结果以及ATP水解化学反应路径一致. 利用此模型所估算的驱动力(约5.8 pN)与实验结果(5~7.5 pN)一致. 所估算的每步中的运动时间(约10)也与实验测量值(0~50)符合. 解释了已观察到的每步(8nm)分为两个半步的现象. 所得到的运动速度-负荷曲线与已有的实验结果一致.  相似文献   

18.
李诗尧  于明 《物理学报》2018,67(21):214704-214704
基于固体炸药爆轰过程中化学反应混合区内的固相反应物与气相生成物处于力学平衡状态及热学非平衡状态的事实,提出一种考虑热学非平衡效应的反应流动模型来描述固体炸药的爆轰流动现象.该爆轰流动模型的主要特点是,在反应混合物Euler方程和固相反应物质量守恒方程的基础上,通过附加一套关于固相反应物的组分物理量的流动控制方程来表达固相反应物与气相生成物之间的热学非平衡效应.根据反应混合区内固相反应物与气相生成物这两种化学组分保持各自内能守恒的混合规则,并借助它们具有压力相等的性质以及满足体积分数总和为1的条件,推导获得的附加方程有:固相反应物的内能演化方程、体积分数演化方程及反应混合物的压力演化方程.这样,建立的爆轰模型包括:反应混合物的质量守恒方程、动量守恒方程、总能量守恒方程、压力演化方程,以及固相反应物的质量守恒方程、内能演化方程、体积分数演化方程.对所获得的爆轰模型方程组采用一个时空二阶精度的有限体积法进行数值求解,典型爆轰问题算例结果表明本文提出的固体炸药爆轰模型是合理的.  相似文献   

19.
李文飞  张丰收  陈列文 《物理学报》2001,50(6):1040-1045
采用同位旋相关的量子分子动力学模型,研究了在轰击能量为40MeV/u和100MeV/u时,112Sn+112Sn和124Sn+124Sn反应产物的同位素分布.发现在40MeV/u时,同位素分布与入射体系的同位旋密切相关;而在100MeV/u时,对这两种不同同位旋体系给出几乎相同的同位素分布.这种同位素分布的能量依赖性为研究化学不稳定性及其与力学不稳定性的竞争提供了新途径 关键词: 化学不稳定性 同位旋效应 同位素分布 同位旋相关的量子分子动力学  相似文献   

20.
The biomolecular motor kinesin uses chemical energy released from a fuel reaction to generate directional movement and produce mechanical work. The underlying physical mechanism is not fully understood yet. To analyze the energetics of the motor, we reconceptualize its chemomechanical cycle in terms of separate fuel reaction and work production processes and introduce a thermodynamic constraint to optimize the cycle. The model predicts that the load dependences of the motor’s velocity, stepping ratio, and dwell time are determined by the mechanical parameters of the motor–track system rather than the fuel reaction rate. This behavior is verified using reported experimental data from wild-type and elongated kinesins. The fuel reaction and work production processes indicate that kinesin is driven by switching between two chemical states, probably following a general pattern for molecular motors. The comparison with experimental data indicates that the fuel reaction processes are close to adiabatic, which is important for efficient operation of the motor. The model also suggests that a soft, short neck linker is important for the motor to maintain its load transport velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号