首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用分子动力学方法以氢气气液成核为研究对象,采用恒定的分子数、体积和温度系综,模拟均质和异质系统下的气液成核过程。探究了过饱和度和温度对冷凝成核的影响:过饱和度大于8时,阈值大于40的团簇数量明显增加;温度在30 K时,单体个数的瞬态波动在15左右,约是20 K时的1.5倍。结果表明:在较高的过饱和度下,成核过程存在两个阶段;随着过饱和度的增加,成核速率增加;温度越高,体系热运动更加强烈,但温度并不影响团簇最终的聚集程度。  相似文献   

2.
溶剂和超声波快速制备β-D-葡萄糖的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文研究了,利用溶剂和超声波的协同作用,在较缓和的条件下快速制备β-D-葡萄糖的方法,研究内容主要包括成核溶剂的挑选,以及葡萄糖溶液浓度,温度,超声电功率密度辐照时间等因素的组合对成核晶型的影响,获得了快速制备β-D-葡萄糖的最佳组合条件,并提出了超声波协同溶剂影响成核晶型的机理,为超声空化泡崩溃时产生的“热点效应”。  相似文献   

3.
采用嵌入原子势的分子动力学模拟方法,研究了5×10~9 s~(–1)应变率下,温度效应对单晶铁中孔洞成核与生长的影响,并对NAG (nucleation and growth)模型在单晶铁中的适用性进行了探讨.结果表明:随着温度的升高,单晶铁的抗拉强度峰值降低, 1100 K温度下单晶铁抗拉强度峰值比100 K温度下降低了35.9%.在100—700 K温度下,拉应力时程曲线表现出双峰值特点,分析表明,第一峰值是由于拉应力升高引起内部结构发生相变而产生,第二峰值则是因发生孔洞成核与生长而产生; 900—1100 K温度下,拉应力时程曲线表现为单峰值,孔洞成核与生长是拉应力下降的主要原因.分析发现,孔洞在高温下更容易成核,高应变率下单晶铁中孔洞成核与生长和NAG模型有较好的符合度,单晶铁中孔洞成核阈值与生长阈值都远高于低碳钢,并且孔洞成核阈值与生长阈值随着温度的升高而逐渐降低.研究结果可为建立高应变率下金属材料动态损伤演化模型提供借鉴.  相似文献   

4.
薄膜外延生长的计算机模拟   总被引:8,自引:0,他引:8       下载免费PDF全文
以Cu膜为例,用Monte-Carlo算法模拟了薄膜生长的随机过程,并提出了更加完善的模型.在合理选择原子间相互作用计算方法的基础上,考虑了原子的吸附、在生长表面的迁移及迁移所引起的近邻原子连带效应、从生长表面的脱附等过程.模拟计算了薄膜的早期成核情况以及表面粗糙度和相对密度.结果表明,随着衬底温度的升高或入射率的降低,沉积在衬底上的原子逐步由离散型分布向聚集状态过渡形成一些岛核,并且逐步由二维岛核向三维岛核过渡.在一定的原子入射率下,存在三个优化温度,成核率最高时的最大成核温度Tn、薄膜的表面粗糙度最低 关键词: Monte-Carlo算法 计算机模拟 薄膜生长  相似文献   

5.
温度对Si上MOCVD-ZnO成核与薄膜生长特性的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
采用金属有机化学气相沉积(MOCVD)方法在Si衬底上进行了ZnO的成核与薄膜生长研究。ZnO薄膜的形貌和结晶特性由成核和后期生长过程共同决定,初期成核温度决定了其尺寸和密度,进而影响后期ZnO主层的生长行为,但由于高温对后期ZnO纳米柱横向生长的抑制,纳米柱的尺寸并没有因为成核尺寸的增大而变大,因此在560℃得到了晶柱尺寸最大、密度最小的ZnO薄膜。最后通过改变成核温度,优化了ZnO外延膜的结晶质量。  相似文献   

6.
李公平  张梅玲 《物理学报》2005,54(6):2873-2876
采用Monte Carlo方法及Embeded-Atom Method作用势,以55个铜原子体系为对象,研究了高 温铜团簇的结构及能量.首先计算温度为200?K时Cu55的能量及结构,其结果 与土耳 其Süleyman ?zcelik 等人的研究小组的研究结果符合很好,说明此方法是可靠的.然后, 从12000?K开始逐渐降温,间隔1000?K,每个温度点MCS为106,在达到平衡时 得到体系的结构及能量.结果表明:在10000?K以上时,体系只有少数原子结合在一起成核,成核数很少,且很不稳定,单原子数较多;在10000?K到6000?K温度段,随着温度的降低,体系 结构由单原子双原子数较多渐变到有较多原子结合在一起,形成一个大的成核中心,剩余单 原子、双原子逐渐与成核中心集结;在温度5000?K达到平衡时,体系原子已经完全结合在 一起,没有单个原子存在,体系能量为-11206?eV,在进一步降温的过程中,体系结构由 5000?K时的不对称、不规则渐变到600?K时的规则、对称的双二十面体结构,能量为-168 50?eV;在可视化的显示下,得到一幅十分清晰的关于体系随温度降低的结构演变图. 关键词: 铜团簇 结构及能量 Monte Carlo 模拟 高温  相似文献   

7.
利用原子力显微镜分析了ZnO薄膜在具有本征氧化层的Si(100)和Si(111)基片上的表面形貌 随沉积时间的演化. 通过对薄膜生长形貌的动力学标度表征,研究了射频反应磁控溅射条件 下,ZnO薄膜的成核过程及生长动力学行为. 研究发现,ZnO在基片表面的成核过程可分为初 期成核阶段、低速率成核阶段和二次成核阶段. 对于Si(100)基片,三个成核阶段的生长指 数分别为β1=1.04,β2=0.25±0.01,β3=0.74;对 于Si(11 关键词: ZnO薄膜 磁控溅射 生长动力学 成核机制  相似文献   

8.
 提出了金刚石在衬底表面凹缺陷内成核的理论,指出凹缺陷尺度对于金刚石成核有着决定性作用,合适的凹缺陷将使成核率达到最大。并且讨论了该理论对于试图通过控制衬底表面缺陷来控制金刚石成核密度等人工微结构设计研究的意义。  相似文献   

9.
采用分子动力学方法模拟了池沸腾中液体层加入异质原子对气泡成核的影响.分析了异质原子能量参数对液体起始气泡成核时间和温度的影响及其机理.结果表明,当异质原子能量参数小于液氩能量参数时,液体起始气泡成核时间缩短,起始温度降低.当异质原子剂能量参数大于液氩能量参数时,液体起始气泡成核时间增加,起始温度升高.异质原子在壁面上的吸附及在液体中的扩散行为影响固液界面性质,较大能量参数的异质原子扩散系数较小,更多能量参数较大的原子吸附在固体表面上使得壁面势能壁垒增加,导致沸腾时间延迟,液体需要吸收更多的热量克服势能壁垒,进而提高沸腾起始温度.能量参数较小的异质原子扩散系数较大,异质原子更容易分散到液体中,使得壁面附近液体层势能减小,液体层更容易气泡成核行为.  相似文献   

10.
高濂 《物理学报》1982,31(8):1090-1096
本文基于溶剂-催化剂作用下金刚石合成中的胶体观点和结构转化模型,提出了作为金刚石结晶基元的双层椅子形网面组的相互聚结是金刚石成核的主要方式的观点。由实验得到金刚石成核数与温度的定性关系曲线以及金刚石成核与压力的关系,并据此讨论了所述成核理论对金刚石合成实践的指导作用。 关键词:  相似文献   

11.
为了研究纳米微粒对低温保护剂溶液结晶性质的影响,实验利用差示扫描量热仪(DSC)测量了加入不同粒径、不同质量分数的HA纳米微粒的乙二醇(EG)低温保护剂溶液的成核温度和结晶焓。实验结果表明:纳米微粒加入EG溶液后,成核温度明显升高,并且随着纳米微粒粒径的和质量浓度的增大而升高显著;加入一定质量浓度(>0.2%)的纳米微粒后,同浓度的低温保护剂溶液的结晶焓稳定地升高。成核温度与结晶焓的升高说明,纳米微粒能够促进低温保护剂溶液的结晶。  相似文献   

12.
提出了一种基于扩散-蠕变机制的空洞生长模型, 结合应力模拟计算和聚焦离子束分析技术研究了Cu互连应力诱生空洞失效现象, 探讨了应力诱生空洞的形成机制并分析了空洞生长速率与温度、应力梯度和扩散路径的关系. 研究结果表明, 在Cu M1互连顶端通孔拐角底部处应力和应力梯度达到极大值并观察到空洞出现. 应力梯度是决定空洞成核位置及空洞生长速率的关键因素. 应力迁移是空位在应力梯度作用下沿主导扩散路径进行的空位积聚与成核现象, 应力梯度的作用与扩散作用随温度变化方向相反, 并存在一个中值温度使得应力诱生空洞速率达到极大值. 关键词: Cu互连 应力迁移 应力诱生空洞 失效  相似文献   

13.
采用脉冲激光烧蚀技术,在室温、低压Ar气条件下通过改变气体压强及靶与衬底间距,对纳米Si晶粒成核的气压阈值进行了研究.根据扫描电子显微镜图像、拉曼散射谱和X射线衍射谱对制备样品的表征结果,确定了在室温、激光能量密度为4 J/cm2、靶与衬底间距为3 cm条件下形成纳米Si晶粒的阈值气压为0.6 Pa.结合流体力学模型和成核分区模型,对纳米晶粒的成核动力学过程进行了分析.通过Monte Carlo数值模拟,表明在气相成核过程中,烧蚀Si原子的温度和过饱和密度共同影响着纳米晶粒的成核. 关键词: 脉冲激光烧蚀 成核 气压阈值 Monte Carlo数值模拟  相似文献   

14.
液化是天然气利用的一种重要形式,在天然气消费中占有重要地位,天然气超音速液化技术是一种新型的天然气液化手段。为研究低温条件下天然气超音速凝结过程,特设计用于天然气超音速液化的Laval喷管,采用内部一致经典成核理论及Gyarmathy模型计算成核率及液滴生长率,在入口压力6 MPa、温度273.15 K的工况下,通过Fluent软件数值模拟了天然气超音速液化过程中主要参数在Laval喷管内的分布情况。结果表明:天然气进入Laval喷管后压力、温度不断降低(最低压力0.796 MPa,最低温度191 K),与等熵(无凝结)流动相比,天然气在Laval喷管喉部之后的一段距离饱和度增大到一定值时,由于释放潜热对气流的加热作用,压力开始升高,天然气产生凝结冲波现象,极限成核率为2.60×10~(21)/(kg·s);随着凝结潜热的释放,成核率急剧变为0;凝结核生成后伴随着液滴的继续生长,在Laval喷管出口处天然气凝结的液滴半径为3.90×10~(-7) m,液滴数目为7.42×10~(14)/m~3,液相质量分数达0.232,取得了良好效果。  相似文献   

15.
水合盐储热材料的成核作用   总被引:18,自引:0,他引:18  
本文对水合盐用作相变储热材料的成核原理进行了研究,当成核剂与水合盐的晶格参数相差在15%以内时,能很好地起成核作用。  相似文献   

16.
低温保护剂溶液结晶过程的显微实验研究   总被引:3,自引:0,他引:3  
本研究利用低温显微实验台记录了异相成核时冰晶的生成和生长情况,利用获得的图像,分析了异相成核情况下冷却速率对冰晶生长速率及冰晶形状的影响,同时本文对存在大量晶胚情况下的冰晶生成和生长也作了详细的分析,指出冰晶的生长空间也是影响冰晶形状的一个不可忽视的因素.  相似文献   

17.
HMX基PBX炸药混合体系中炸药晶体在发生高温熔化和分解反应之前,会率先发生非均匀热膨胀和固相晶型转变,使材料的力学性能和安全性能发生突变。为探究HMX晶体的热致相变对材料内部损伤演化的影响机制,发展了考虑HMX晶体热膨胀和相变等变形机制的热力耦合晶体本构模型,从力学角度揭示了黏结剂包覆HMX晶体相变对体积变形、应力状态以及裂纹成核演化过程的影响机理,量化分析了升温速率对材料相变和裂纹损伤状态的影响规律。结果表明:随着加载温度升高,HMX晶体的热膨胀和β→δ相变导致体积增大,晶体内部形成拉伸应力状态,同时晶体与黏结剂相互挤压形成的局部压剪作用使晶体内部出现裂纹成核和扩展现象。相变温度附近HMX晶体内部裂纹成核和扩展数量显著增加,晶体内部发生不可逆损伤。外界升温速率对晶体内部裂纹形核扩展与损伤造成显著影响,较高的升温速率会加大晶体损伤程度,增加炸药内潜在热点源及意外点火风险。  相似文献   

18.
石墨烯在新基材上的生长一直是被关注的焦点,而在以金刚石多晶体为基底沉积石墨烯的成核机理方面的研究对石墨烯大规模的制备具有重要的现实意义.本文采用反应性分子动力学仿真技术,模拟了镍催化双晶金刚石辅助石墨烯沉积生长的过程,研究了金刚石晶界对石墨烯成核生长过程中动力学行为的影响.研究结果表明晶界碳原子可作为补充碳源扩散至镍自由表面,参与石墨烯的成核生长.论文探究了温度对碳原子扩散行为的影响,发现当沉积温度为1700 K时,利于晶界碳原子在镍晶格中扩散,有效提高石墨烯成核密度;探究了沉积碳源流量对石墨烯表面质量影响,发现1700 K下采用较低的碳沉积速率1 ps–1有利于获得最佳的石墨烯表面质量.本文的研究结果不仅为金刚石晶界辅助石墨烯沉积生长提供了有效的理论模型和机理解析,还揭示了沉积温度和沉积碳源流量对生长石墨烯表面质量的影响规律,为石墨烯/金刚石多晶体异质结构在超精密制造和微电子领域的实际应用提供理论基础.  相似文献   

19.
基于国家数值风洞LBM模块和自编程序,本文在孔隙尺度下对微孔中两种可混溶溶液的黏性指进反应混合过程进行了数值研究。针对两种溶液之间的化学反应以及产物的析出,本文重点研究化学反应速率、固态生成物的成核速率以及聚集速率对黏性指进的影响。研究发现:反应会明显改变黏性指进的界面浓度分布,一方面随着反应速率的增加,指进界面处各组分的变化越来越明显;另一方面由于受到扩散作用的限制,当反应速率增大到一定值后,各组分的平均浓度不再发生变化;产物的生成量与反应速率成正相关,与成核速率和聚集速率成负相关;析出的固相组分的浓度与成核速率和聚集速率成正相关;混合长度主要和反应速率相关,成核速率以及聚集速度的改变对混合长度基本没有影响。  相似文献   

20.
采用介观尺度格子Boltzmann方法数值研究壁面的表面特性对霜层生长的影响.将成核概率模型和改进的焓法相变模型相耦合,建立基于成核概率理论的霜层生长过程格子Boltzmann模型.该模型能够在宏观尺度上模拟霜层生长的加密加厚过程,也可以从微观尺度上描述局部的冰枝生长导致的霜层结构的动态变化,应用该模型能够获得霜层平均厚度、平均密度、结霜量等内部非稳态物理量.开展冷壁面上霜层形成及生长过程的数值研究,获得霜层的拓扑结构时空演化特性,得到不同时刻下结霜量以及霜层的平均厚度、平均密度、平均固相体积分数,探讨冷壁面温度、相对湿度、冷表面浸润性能对结霜的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号