首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
褚立志  邓泽超  丁学成  赵红东  王英龙  傅广生 《物理学报》2012,61(10):108102-108102
为了研究不同环境气压条件下纳米Si晶粒成核区的范围,采用波长为308 nm的 XeCl脉冲准分子激光器,分别在1-200 Pa的Ar气环境下, 烧蚀高阻抗单晶Si靶,在距离烧蚀点正下方2.0 cm处水平放置一系列单晶Si 或玻璃衬底,沉积制备了纳米Si薄膜. Raman谱和X射线衍射谱测量证实了薄膜中纳米Si晶粒已经形成. 扫描电子显微镜的测量结果表明,环境气压的变化影响了衬底上纳米Si晶粒的平均尺寸及其分布范围. 根据成核区位置的确定方法,计算得出随着环境气压的增加纳米Si晶粒成核区的范围先变宽后变窄的规律. 从烧蚀动力学的角度对实验结果进行了分析.  相似文献   

2.
采用XeCl脉冲准分子激光器,烧蚀高阻抗单晶Si靶,在1—500 Pa的Ar气环境下沉积制备了纳米Si薄膜. x射线衍射谱测量证实,纳米Si晶粒已经形成.利用扫描电子显微镜观测了所形成纳米Si薄膜的表面形貌,结果表明,随着环境气压的增加,所形成的纳米Si晶粒的平均尺寸增大,气压为100 Pa时达到最大值20 nm,而后开始减小. 从晶粒形成动力学角度,对实验结果进行了定性分析. 关键词: 纳米Si晶粒 脉冲激光烧蚀 表面形貌  相似文献   

3.
为了确定纳米Si晶粒气相成核的位置,采用XeCl准分子激光器,在10Pa氩气环境下,烧蚀高阻抗单晶Si靶,在距离等离子羽正下方2.0cm处、与其轴线平行放置一系列单晶Si或玻璃衬底,沉积制备了纳米Si薄膜. X射线衍射、Raman散射、扫描电子显微镜和原子力显微镜结果均显示,纳米Si晶粒只在距靶约0.5—2.8cm平行距离范围内的样品上形成,在此范围内,随着离靶平行距离的增大,所形成的纳米Si晶粒的平均尺寸逐渐减小,并且晶粒尺寸的分布也发生变化. 根据成核区起始和终止的突变特征,结合晶粒形成后的平抛运动规律,对晶粒气相成核的位置进行了估算. 关键词: 纳米Si晶粒 脉冲激光烧蚀 成核区  相似文献   

4.
具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备   总被引:2,自引:0,他引:2       下载免费PDF全文
采用XeCl脉冲准分子激光器,在10Pa的Ar气环境下,烧蚀高阻单晶Si靶,分别在距靶3cm的玻璃和单晶Si衬底上制备了纳米Si薄膜. 相应的Raman谱和x射线衍射谱均证实了薄膜中纳米Si晶粒的形成. 扫描电子显微镜图像显示,所形成的薄膜呈均匀的纳米Si晶粒镶嵌结构. 相应的光致发光峰位出现在599nm,峰值半高宽为56nm,与相同参数下以He气为缓冲气体的结果相比,具有较窄的光致发光谱,并显示出谱峰蓝移现象. 关键词: 纳米Si晶粒 脉冲激光烧蚀 薄膜形貌 光致发光  相似文献   

5.
在真空环境中,采用脉冲激光烧蚀技术,分别在衬底加温和室温条件下沉积制备了纳米Si薄膜.对在室温条件下制备得到的非晶Si薄膜,采用后续热退火实现其晶化.通过扫描电子显微镜、Raman散射仪和X射线衍射仪对制备的薄膜形貌、晶态成分进行表征,得到两种情况下纳米Si晶粒形成的阈值温度分别为700 ℃和850 ℃,通过定量计算比较了两种情况下晶粒成核势垒的大小,并从能量角度对阈值温度的差别进行了理论分析.  相似文献   

6.
采用蒙特-卡罗(Monte Carlo)模拟方法,研究了初始溅射粒子密度对其传输中的密度和速度分布以及环境气体密度分布的影响.结果表明,随着初始溅射粒子密度增大,烧蚀粒子和环境气体高密度峰的交叠区离开靶的最大距离减小,被衬底反弹后,距靶的最小距离减小,烧蚀粒子的速度分布随初始溅射粒子密度增大而变宽,当初始溅射粒子密度大于8.33×1025 m-3时,出现速度劈裂现象.所得结论为进一步定量研究纳米晶粒的成核机理提供了基础. 关键词: Monte Carlo模拟 烧蚀粒子 密度分布 速度分布  相似文献   

7.
Yoshida等人提出的惯性流体模型只能解释脉冲激光烧蚀制备纳米硅晶粒平均尺寸随环境气压的变化规律.在此模型基础上,考虑到烧蚀粒子的初始速度分布(Maxwell分布),得到了纳米硅晶粒尺寸分布的解析表达式,数值模拟结果与Yoshida等人在不同环境氦气压下制备样品的晶粒尺寸分布的实验统计数据基本相符.还利用修正后的模型对不同环境气体种类(氦、氖、氩)中制备的纳米Si晶粒尺寸分布进行了模拟,模拟结果与实验数据相符.结论可为实现纳米硅晶粒尺寸的均匀可控提供理论依据. 关键词: 纳米硅晶粒 脉冲激光烧蚀 惯性流体模型 尺寸分布  相似文献   

8.
纳米硅具有明显的光致发光效应和量子尺寸效应,广泛的应用在现代电子工业和太阳能光伏工业中.尺寸影响着纳米硅的实际用途,因此制备尺寸可控的纳米硅晶粒具有很重要的实际意义.本文采用脉冲激光沉积(PLD)技术,在烧蚀点水平方向、距靶2 cm处引入一束流量为5 sccm的氩(Ar)气流,在0.01-0.5 Pa的Ar气压下烧蚀高阻抗单晶硅(Si)靶.在管口正下方1 cm处水平放置衬底来沉积纳米Si薄膜;并用同一装置,在0.08 Pa的Ar气压下分别引入流量为0,2.5,5,7.5,10 sccm的Ar气流沉积纳米Si薄膜.利用原子力显微镜(AFM)、X射线衍射(XRD)、Raman散射对样品表面形貌和微观结构进行分析表征.结果表明:不引入气流时出现纳米Si晶粒的阈值气压是0.1Pa,引入气流后出现纳米Si晶粒的阈值气压为0.05 Pa.晶粒尺寸随着气流流量的增大而减小.  相似文献   

9.
提出一种控制脉冲激光烧蚀制备纳米Si晶粒尺寸分布的新方法。在10Pa的Ar环境中,采用脉冲激光烧蚀高阻抗单晶硅靶沉积制备了纳米Si晶薄膜。在羽辉正上方2.0cm,距靶0.3~3.0cm范围内的不同位置引入氩气流,在烧蚀点正下方2.0cm处水平放置单晶Si(111)衬底来收集制备的纳米Si晶粒。利用扫描电子显微镜观察样品表面形貌,并对衬底不同位置上纳米Si晶粒进行统计。结果表明:在不引入气流时,晶粒的尺寸随靶衬间距的增加先增大后减小,晶粒尺寸峰值出现在距靶1.7cm处;引入气流后,晶粒尺寸分布发生变化,在距靶1.7cm引入气流时晶粒尺寸峰值最大,在距靶3.0cm引入气流时晶粒尺寸峰值最小,且出现晶粒尺寸峰值的位置随着引入气流位置的增加而增大。  相似文献   

10.
在室温和10 Pa氩气环境中,引入平行于靶面方向的直流电场,通过改变脉冲激光能量密度烧蚀单晶硅靶,在与羽辉轴线呈不同角度的衬底上沉积纳米硅晶薄膜。利用扫描电子显微镜和拉曼散射谱对沉积样品进行分析,结果表明:随着激光能量密度的增加,位于相同角度衬底上的晶粒尺寸和面密度逐渐变大;在同一激光能量密度下,零度角处衬底上的晶粒尺寸和面密度最大,且靠近接地极板处的值比与之对称角度处略大。通过朗缪尔探针对不同能量密度下烧蚀羽辉中硅离子密度变化的诊断、结合成核区内晶粒成核生长动力学过程,对晶粒分布特性进行了分析。  相似文献   

11.
负偏压热灯丝CVD金刚石膜核化和早期生长的研究   总被引:14,自引:0,他引:14       下载免费PDF全文
廖克俊  王万录  冯斌 《物理学报》1998,47(3):514-519
利用扫描电子显微镜、Raman谱和X射线光电子能谱,研究了Si衬底上热灯丝CVD金刚石膜的核化和早期生长.在-300V和100mA条件下预处理15min,镜面抛光的Si(100)表面上金刚石核密度超过了109cm-2,但是核的分布极不均匀且可分为三个区域:A区,边缘处以锥体为主;B区,位于边和中心之间过渡区是纳米金刚石;C区,中心处有SiC层.无偏压下生长4h后,A区形成许多大而弧立的金刚石颗粒,B区成为织构金刚石膜,而C区变为含有大量缺陷的连续金刚石膜.衬底负 关键词:  相似文献   

12.
王锋  吴卫东  蒋晓东  唐永建 《物理学报》2012,61(2):24206-024206
本工作采用电子回旋共振(ECR)低压等离子体刻蚀技术, 刻蚀非晶熔石英表面. Ar/CF4为反应气体刻蚀后再经O等离子体钝化, 非晶熔石英表面出现晶化现象. 晶化层约几百纳米厚. Ar/CF4在ECR的电磁场作用下产生F离子与C离子, F离子使熔石英表面的Si-O共价键断裂, 并释放出O离子. C离子与O离子迅速键合生成CO2, 而被断键的Si原子与四个F原子键合生成气态SiF4. 熔石英原始表面被去除的同时, 在新的表面留下大量不饱和Si原子. 不饱和Si原子在高温条件下被O等离子钝化, 形成结晶态α 方石英.  相似文献   

13.
Simultaneous implantation and deposition of Si by KrF-excimer-laser (248 nm) irradiation in an ambient silane (SiH4) gas realize the surface modification of stainless steel (SUS) 304 at room temperature. This process is referred to as the Laser Implant-Deposition (LID). Depth profiles of Si concentration in the modified layers and the total quantities of supplied Si (Si dose) are analyzed by Rurtherford Backscattering Spectroscopy (RBS) measurements. The Si supply mechanism of LID is discussed with variations of the Si dose as a function of laser fluence, gas pressure, and the number of laser pulses. The calculation of temperature along the depth during the LID process suggests that the Si atoms diffuse into the SUS304 in a liquid phase. Fitting of the calculated depth profile to the experimental data, using the interdiffusion theory, gives an interdiffusion coefficient between Si and SUS304 as high as 2.8×10–6 cm2/s. A simplified model for simulation, by which well agreed depth profiles of Si can be simulated for various experimental conditions, is proposed.  相似文献   

14.
唐正霞  沈鸿烈  江丰  方茹  鲁林峰  黄海宾  蔡红 《物理学报》2010,59(12):8770-8775
为了缩短铝诱导法制备大晶粒多晶硅薄膜的退火时间,用射频磁控溅射法在玻璃衬底上沉积了a-Si/SiO2/Al叠层膜,并用两种方法进行变温退火.分析了变温退火工艺对铝诱导晶化过程的影响,着重讨论了退火过程中温度由低温升到高温时不形成小晶粒的机理和条件.研究表明,当退火温度升高时,是否形成小晶粒取决于晶粒半径、耗尽层厚度和相邻晶粒间距三者之间的关系.  相似文献   

15.
A KrF laser was used to ablate a polycrystalline Si target for deposition of Si on MgO and GaAs substrates at room temperature. The deposition was performed in 10−8 mbar, with two types of laser beams: a homogeneous beam being imaged onto the target (2.9 J/cm2), and a non-homogeneous which is nearly focused (2 J/cm2, 6.5 J/cm2). In both cases, the beam was scanned over an area of 1 cm2. For the homogenous beam, we observed only a limited number of droplets (<0.1 μm). A high number of micron-sized (<5 μm) droplets were observed on the film by the higher fluence nonhomogeneous laser beam. Raman spectroscopy showed that the micron-sized droplets are crystalline while the film is amorphous. The generation of the large droplets is most likely related to the cone structures formed on the ablated target. We also compared cone formation on a polycrystalline Si target and a single crystalline Si wafer, using multiple laser pulses onto a single spot.  相似文献   

16.
刘世祥  朱美芳 《发光学报》1998,19(3):212-215
使用除氢、高温成核和低温生长的三段式快速热处理方法,将常规方法制备的氢化非晶硅(a-SiH)薄膜晶化成纳米硅(nc-Si)薄膜。该薄膜在波长为457.9nm的Ar+激光的激发下,在室温发射出蓝绿光。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号