首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Tungsten oxide thin films were deposited on glass substrates by the magnetron sputtering of WO3 bulk at room temperature. The deposited films were annealed at different temperatures in air. The structural measurements indicate that the films annealed below 300℃ were amorphous, while the films annealed at 400℃ were mixed crystalline with hexagonal and triclinic phases of WO3. It was observed that the crystallization of the annealed films becomes more and more distinct with an increase in the annealing temperature. At 400℃, nanorod-like structures were observed on the film surface when the annealing time was increased from 60 min to 180 min. The presence of W=O stretching, W–O–W stretching, W–O–W bending and various lattice vibration modes were observed in Raman measurements. The optical absorption behaviors of the films in the range of 450–800 nm are very different with changing annealing temperatures from the room temperature to 400℃. After annealing at 400℃, the film becomes almost transparent. Increasing annealing time at 400℃ can lead to a small blue shift of the optical gap of the film.  相似文献   

2.
In this study, Tungsten Oxide (WO3) thin films were prepared by Chemical Spray Pyrolysis (CSP) and Spin Coating (SC) techniques and it was investigated effects of technique and parameter on the films. WO3 thin films were deposited on ITO (Indium Tin Oxide) coated glasses. The structural, optical and electrochromic properties of the WO3 thin films were characterized by XRD, SEM, UV, and CV measurements. The sharpest (200) peak was observed in the XRD spectra and optical band gaps were calculated around 2.6~3.1 eV via UV-Vis spectra for all of the samples. Micro fibrous reticulated surface (filamentous like) morphology for the films deposited by CSP technique and smooth surface morphology with high optical transmittance for the film deposited by SC Technique were obtained from SEM images. In addition to these results, it was revealed that all the samples exhibit good electrochromic performance.  相似文献   

3.
Cu2O thin films with (111) preferred orientation have been grown on glass and Cu substrates by rapid thermal oxidation of Cu at 500℃ for 45s. The optical band gap energy was determined by spectral data of transmittance and absorbance to be 2.04eV. The electrical conductivity of grown films was measured around (1:1 × 10^-5Ω^-1cm^-1) at 300K. Thermoelectric power measurements of the film were carried out. Furthermore, the properties of these films are compared with properties of Cu2O obtained by other methods.  相似文献   

4.
Zn0.99Cu0.01O films were studied experimentally and theoretically.The films were prepared by pulsed-laser deposi tion on Pt(111)/Ti/SiO2/Si substrates under various oxygen pressures to investigate the growth-dependence of the ferromag netic properties.The structural,magnetic,and optical properties were studied,and it was found that all the samples possess a typical wurtzite structure,and that the films exhibit room-temperature ferromagnetism.The sample deposited at 600℃and an oxygen pressure of 10 Pa showed a large saturation magnetization of 0.83μB/Cu.The enhanced ferromagnetism in the(Cu,Li)-codoped ZnO is attributable to the existence of Zn vacancies(VZn),as shown by first-principles calcu lations.The photoluminescence analysis demonstrated the existence of V Zn in both Zn0.99Cu0.01O and(Cu,Li)-codoped ZnO thin films,and this plays an important role in the increase of ferromagnetism,according to the results of first-principles calculations.  相似文献   

5.
The GaN thick films have been grown on porous GaN template and planar metal-organic chemical vapor deposition(MOCVD)-GaN template by halide vapor phase epitaxy(HVPE). The analysis results indicated that the GaN films grown on porous and planar GaN templates under the same growth conditions have similar structural, optical, and electrical properties. But the porous GaN templates could significantly reduce the stress in the HVPE-GaN epilayer and enhance the photoluminescence(PL) intensity. The voids in the porous template were critical for the strain relaxation in the GaN films and the increase of the PL intensity. Thus, the porous GaN converted from β-Ga2O3 film as a novel promising template is suitable for the growth of stress-free GaN films.  相似文献   

6.
ZrO2 thin films were deposited by using an electron beam evaporation technique on three kinds of lithium triborate (LIB3O5 or LBO) substrates with the surfaces at specified crystalline orientations. The influences of the LBO structure on the structural and optical properties of ZrO2 thin films are studied by spectrophotometer and x-ray diffraction. The results indicate that the substrate structure has obvious effects on the structural and optical properties of the film: namely, the ZrO2 thin film deposited on the X-LBO, Y-LBO and Z-LBO orients to m(-212), rn(021) and o(130) directions. It is also found that the ZrO2 thin film with m(021) has the highest refractive index and the least lattice misfit.  相似文献   

7.
Reduced graphene oxide thin films were fabricated on quartz by spray coating method using a stable dispersion of reduced graphene oxide in N,N-Dimethylformamide.The dispersion was produced by chemical reduction of graphene oxide,and the film thickness was controlled with the amount of spray volume.AFM measurements revealed that the thin films have near-atomically flat surface.The chemical and structural parameters of the samples were analyzed by Raman and XPS studies.It was found that the thin films show electrical conductivity with good optical transparency in the visible to near infrared region.The sheet resistance of the films can be significantly reduced by annealing in vacuum and reach 58 k?with a light transmittance of 68.69%at 550 nm.The conductive transparent properties of the reduced graphene oxide thin films would be useful to develop flexible electronics.  相似文献   

8.
Zn0.75Co0.25O films are fabricated via reactive electron beam evaporation. The influence of growth temperature on the microstructural, optical and magnetic properties of Zn0.75Co0.25O films is investigated by using x-ray diffraction, selected area electron diffraction, field emission scanning electron microscope, high resolution transmitting electron microscope, photoluminescence (PL), field dependent and temperature dependent DC magnetization, and x-ray photoelectron spectroscopy (XPS). It is shown that Zn0.75Co0.25O films grown at low temperatures (250-350℃) are of single-phase wurtzite structure. Films synthesized at 300 or 350℃ reveal room temperature (RT) ferromagnetism (FM), while su for 250℃ fabricated films is found above 56 K. PL and XPS investigations show favour towards the perspective that the O-vacancy induced spin-split impurity band mechanism is responsible for the formation of RT FM of Zn0.75Co0.25O film, while the superparamagnetism of 250℃ fabricated film is attributed to the small size effect of nanoparticles in Zn0.75Co0.25O film.  相似文献   

9.
Pure and neodymium-doped gadolinium calcium oxoborate crystals of high quality were grown by the Czochralski method.The orientation of crystal was precisely determined,and the samples for measurements were prepared.Through synchrotron x-ray topography and high-resolution x-ray diffractometry,the twin structure was discovered.Some properties such as the figure of merit value,and dielectric,piezoelectric,and elastic constants were meausured along with a discussion of the anisotropy of the laser properties.  相似文献   

10.
This paper discusses the effect of N 2 plasma treatment before dielectric deposition on the electrical performance of a Al2O3 /AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor(MISHEMT),with Al2O3 deposited by atomic layer deposition.The results indicated that the gate leakage was decreased two orders of magnitude after the Al2O3 /AlGaN interface was pretreated by N 2 plasma.Furthermore,effects of N 2 plasma pretreatment on the electrical properties of the AlGaN/Al2O3 interface were investigated by x-ray photoelectron spectroscopy measurements and the interface quality between Al2O3 and AlGaN film was improved.  相似文献   

11.
In this work, a study of synthesis of thin films of Zn(O;OH)S and In(O;OH)S deposited by chemical bath deposition (CBD) is presented. The thin films of Zn(O;OH)S and In(O;OH)S were deposited from different chemical bath systems on absorber layers of CuInS2 (CIS), indium tin oxide substrates (ITO) and soda lime glass substrates (SL). The differences on the growth rate, optical, morphological and structural properties of the thin films Zn(O;OH)S and In(O;OH)S are studied. The Growth studies showed that thin films of Zn(O;OH)S and In(O;OH)S grown faster on CIS than on SL and ITO substrates. The optical and morphological studies showed that both thin films present high transmittance in visible electromagnetic spectrum and covered uniformly the surface of the substrate, furthermore it was observed that thin films of Zn(O;OH)S and In(O;OH)S were polycrystalline. Finally, the results suggest that thin films of Zn(O;OH)S and In(O;OH)S obtained in this work could be used as buffer layer to replace the thin films of CdS, which are conventionally used as buffer layer in chalcopyrite based solar cells.  相似文献   

12.
In this paper AgInS2 and Zn(O,OH)S thin films were synthesized and characterized. AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process, and, Zn(O,OH)S thin films were deposited from chemical bath containing thiourea, zinc acetate, sodium citrate and ammonia. X-ray diffraction measurements indicated that AgInS2 thin films grown with chalcopyrite structure, and the as-grown Zn(O,OH)S thin films were polycrystalline. It was also found that the AgInS2 films presented p-type conductivity, a high absorption coefficient (greater than 104 cm−1) and energy band-gap Eg of about 1.95 eV, Zn(O,OH),S thin films presented Eg of about 3.89 eV. Morphological analysis showed that under this synthesis conditions Zn(O,OH),S thin films coated uniformly the absorber layer. Additionally, the Zn(O,OH)S kinetic growth on AgInS2 layer was studied also. Finally, the results suggest that these layers possibly could be used in one-junction solar cells and/or as top cell in a tandem solar cell.  相似文献   

13.
Chemical bath deposition of ZnS thin films from NH3/SC(NH2)2/ZnSO4 solutions has been studied. The effect of various process parameters on the growth and the film quality are presented. The influence on the growth rate of solution composition and the structural, optical properties of the ZnS thin films deposited by this method have been studied. The XRF analysis confirmed that volume of oxygen of the as-deposited film is very high. The XRD analysis of as-deposited films shows that the films are cubic ZnS structure. The XRD analysis of annealed films shows the annealed films are cubic ZnS and ZnO mixture structure. Those results confirmed that the as-deposited films have amorphous Zn(OH)2. SEM studies of the ZnS thin films grown on various growth phases show that ZnS film formed in the none-film phase is discontinuous. ZnS film formed in quasi-linear phase shows a compact and a granular structure with the grain size about 100 nm. There are adsorbed particles on films formed in the saturation phase. Transmission measurement shows that an optical transmittance is about 90% when the wavelength over 500 nm. The band gap (Eg) value of the deposited film is about 3.51 eV.  相似文献   

14.
In this combined film thickness, scanning electron microscopy (SEM), X-ray diffraction and optical properties study, we explore the effects of different stirring speeds on the growth and optical properties of ZnS film deposited by CBD method. From the disclosed changes of thickness of ZnS film, we conclude that film thickness is independent of the stirring speeds in the heterogeneous process (deposition time less than 40 min), but increases with the stirring speeds and/or deposition time increasing in the homogeneous process. Grazing incident X-ray diffraction (GIXRD) and the study of optical properties disclosed that the ZnS films grown with different stirring speeds show partially crystallized film and exhibit good transmittance (70-88% in the visible region), but the stirring speeds cannot give much effects on the structure and optical properties in the homogeneous process.  相似文献   

15.
The mass spectrometer, is a powerful tool to identify species and investigate reactions in the gas phase. In this work, the mechanism of aerosol assisted chemical vapor deposition (AACVD) of Zn(O,S) films prepared from H2S and zinc acetylacetonate (Zn(acac)2) precursor solutions is elucidated by mass spectrometry. The thermochemical behavior of Zn(acac)2 is investigated by characterizing the influence of the solvent (H2O or ethanol), the pH value of the precursor solution and the effect of the reactant H2S, and by tracking gaseous intermediate products using mass spectrometry. Based on these results, a proton-promoted thermolysis mechanism for the AACVD Zn(O,S) film formation is then proposed, which is initiated by the hydrolysis with H2O as the first stage, followed either by the rearrangement with an intramolecular proton or by the reaction with an extramolecular proton to produce ZnO or Zn(O,S). A real time mass tracking of the AACVD process reveals that only an adequate amount of H2S promotes the chemical gas-phase decomposition and sulfurization process, while an excess of H2S depletes the gaseous Zn(acac)2 concentration and consequently reduces the film growth rate. The knowledge of the thermal decomposition process helps to optimize synthesis conditions and to adjust film properties to meet the requirement of the application in chalcopyrite or kesterite thin film solar cells.  相似文献   

16.
Undoped and tin (Sn) doped ZnO films have been deposited by sol gel spin coating method. The Sn/Zn nominal volume ratio was 1, 3 and 5% in the solution. The effect of Sn incorporation on structural and electro-optical properties of ZnO films was investigated. All the films have polycrystalline structure, with a preferential growth along the ZnO (002) plane. The crystallite size was calculated using a well-known Scherrer's formula and found to be in the range of 26-16 nm. X-ray diffraction patterns of the films showed that Sn incorporation leads to substantial changes in the structural characteristics of ZnO films. The SEM measurements showed that the surface morphology of the films was affected from the Sn incorporation. The highest average optical transmittance value in the visible region was belonging to the undoped ZnO film. The optical band gap and Urbach energy values of these films were determined. The absorption edge shifted to the lower energy depending on the Sn dopant. The shift of absorption edge is associated with shrinkage effect. The electrical conductivity of the ZnO film enhanced with the Sn dopant. From the temperature dependence of conductivity measurements, the activation energy of ZnO film increased with Sn incorporation.  相似文献   

17.
The new precursor of Cu–Zn–Sn–O (CZTO) was proposed for Cu2ZnSnS4 (CZTS) thin film fabrication to improve film morphology. The CZTS thin film grown from Cu–Zn–Sn (CZT) precursors has many bumps. We deposited CZTO precursors on Mo/soda-lime glass (SLG) substrates by RF sputtering using a CZT (Cu:Zn:Sn = 2:1:1) target in Ar and O2 atmosphere at various O2 partial pressures (0%, 5%, 17% and 20%). Subsequently, the CZTO precursors were sulfurized in Ar and S atmosphere to fabricate CZTS thin films. The CZTO precursors were amorphous. The morphology of the CZTS thin films was improved by the CZTO precursors. All of the CZTS films fabricated in this study had the same crystal structure. Composition analysis revealed that 50% of O were detected in the CZTO precursor, but O was not detected after sulfurizing process, indicating that O was substituted by S. The CZTS thin film from the CZTO precursor fabricated at O2 partial pressure of 20% had similar composition for solar cell absorber.  相似文献   

18.
A facile chemical route based on room temperature chemical bath deposition (CBD) was developed to deposit the Cd(OH)2 nano-nest. The growth mechanism follows two-stage crystallization with initial growth of nucleation centers, followed by subsequent anisotropic growth. The nano-nest morphological evolution of Cd(OH)2 on different substrates has been carried out. These films have been characterized by the techniques; such as X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), optical absorption, contact angle measurement and thermoelectric power (TEP) measurements. The X-ray diffraction study revealed that the as deposited film consists of cadmium hydroxide (Cd(OH)2) phase. The nano-nest consisted of wires with nearly uniform in dimensions, with diameter around 30 nm and length of few microns. As-deposited Cd(OH)2 film used in this study showed water contact angle of 66°. The optical bandgap was found to be 3.2 eV, with n-type electrical conductivity as confirmed from thermo-emf measurements.  相似文献   

19.
叶颖惠  吕斌  张维广  黄宏文  叶志镇 《物理学报》2012,61(3):36701-036701
非极性方向生长的ZnO基多量子阱消除了量子限域Stark效应, 可以提高光电器件的发光效率. 据此我们采用脉冲激光沉积方法(PLD)在r面蓝宝石衬底上生长了高质量的a面(1120)单一取向非极性Zn(Mn,Na)O薄膜. X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、Hall测试、X射线光电子能谱(XPS)等测试结果表明: 衬底温度和生长气压对Zn(Mn,Na)O薄膜的非极性生长影响很大, 在600℃和0.02 Pa条件下实现了Mn-Na共掺, 得到了高结晶质量并具有良好光电性能的非极性Zn(Mn,Na)O薄膜. 此外, 我们还利用超导量子干涉仪(SQUID)研究了Zn(Mn,Na)O薄膜的生长取向对其室温铁磁性能的影响规律, 并对引起磁性变化的机理进行了讨论.  相似文献   

20.
Non-stoichiometric ternary chalcogenides (Zn,Fe)S were prepared in the film form by pyrolytic spray deposition technique, using air/nitrogen as the carrier gas. The precursor solution comprised of ZnCl2, FeCl2 and thiourea. The depositions were carried out under optimum conditions of experimental parameters viz. carrier gas (air/nitrogen) flow rate, concentration of precursor constituents, nozzle substrate distance and temperature of quartz substrate. The deposited thin films were later sintered in argon at 1073 K for 120 min.The structural, compositional and optical properties of the sintered thin films were studied. X-ray diffraction studies of the thin films indicated the presence of (Zn,Fe)S solid solution with prominent cubic sphalerite phase while surface morphology as determined by scanning electron microscopy (SEM) revealed a granular structure.The chemical composition of the resulting thin films as analyzed by energy dispersive X-ray analysis (EDAX) reflected the composition of the precursor solutions from which the depositions were carried out with Fe at% values ranging from 0.4 up to 33.SEM micrographs of thin films reveal that the grain sizes of the thin films prepared using air as carrier gas and N2 as carrier gas are in the vicinity of 300 and 150 nm, respectively.The diffuse transmittance measurements for thin films, as a function of wavelength reveal the dependence of direct optical band gap on Fe content and type of phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号